scholarly journals Acoustic Characterization Of Sudan Black Nanobubbles For Multimodal Ultrasound & Photoacoustic Imaging

2021 ◽  
Author(s):  
Danad Wegierak

Dyed, shelled, nanobubbles (NBs) have recently been proposed as contrast agents for multimodal ultrasound-photoacoustic (US-PA) imaging. However, changes to the shell composition due to the presence of the dye can modify the response of bubbles to ultrasound. In this work, the effects of the dye, Sudan Black B, on a formulation of lipid shelled NBs are studied. Formulations were produced with increasing concentration of Sudan Black B. The size and concentration of activated NBs were tested. The surface tension of bulk lipid solution was measured using pendant drop tensiometry and activated bubble solutions were measured for single bubble and bubble population response to incident ultrasound. While results show no statistically significant effect of Sudan Black concentration on bubble concentration or size, surface tension increased linearly with dye concentration to a maximum increase of 13%. With the addition of Sudan Black B, single bubble experiments show an increase in the contribution of bubble growth signals, a decrease in contribution of nonlinear signals, and a decrease in bubble destruction. The results presented in this work indicate that the presence of Sudan Black B in the lipid shell of a nanobubble may increase the shell permeability impacting stability of the bubble population and their potential for multimodal US-PA imaging.

Author(s):  
Yan Yang ◽  
Liang-ming Pan ◽  
Long-chang Xue

In this paper, based on the previous experiment and the VOF (Volume of Fluid) multiphase model, the growth characteristics of a single bubble was numerically investigated in a rectangular pool boiling channel (10 mm × 10 mm × 25 mm) under micro-gravity. The transportation of mass and energy during the phase change was established by adding source term to the mass and energy equations with User Defined Function (UDF). The results showed that under microgravity, the streamline and the temperature field distribution around the bubble were significantly changed compared with the normal gravity, and the flow field and the temperature are no longer a symmetrical distribution. The bubble between microgravity and normal gravity was different from the detachment, and it does not departure from the heating wall directly under the microgravity conditions because of surface tension. But the surface tension gradient caused Marangoni effects are more significant at the smaller microgravity. The bubble growth is more complicated under the conditions of microgravity, and it is connected with the degree of the microgravity: smaller microgravity will result higher bubble growth rate. Moreover, the bubble diameter was changed more fantasticality, under microgravity and the heat transfer coefficient fluctuated more heavily with the increasing of microgravity.


Author(s):  
Leah Matczak ◽  
Thomas W. Smith ◽  
Michael J. Schertzer ◽  
Patricia Iglesias

This work will provide a method to characterize a variety of novel high performance lubricants. In particular, surface tension and evolution of the contact angle on a variety of surfaces over one hour were recorded. Contact angles were measured using a ramé-hart Goniometer. Surface tension is measured with the same device using the pendant drop method. Fluids studied here include: trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl) amide ([THTDP][NTf2]), trihexyltetradecyl-phosphonium decanoate ([THTDP][Deca]), 1-ethyl-3-methyl imidazolium trifluorosulfonyl imide ([EMI][NTf2]), and 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate ([EMI][FMS]). Contact angles were measured on the following surfaces: AISI 52100 stainless steel disks polished to 0.01–0.05 μm, Kapton, SU-8, Teflon, and glass slides. The resultant change in roughness on 52100 steel disks was measured to provide insight into the corrosive properties of each liquid.


1997 ◽  
Author(s):  
Anatoliy N. Ivakin ◽  
Darrell R. Jackson

2017 ◽  
Vol 122 (8) ◽  
pp. 084103 ◽  
Author(s):  
E. Smirnova ◽  
A. Sotnikov ◽  
S. Ktitorov ◽  
H. Schmidt

2021 ◽  
pp. 004051752110238
Author(s):  
Oluwafemi P Akinmolayan ◽  
James M Manimala

Silica nanoparticle-impregnated Kevlar (SNK) fabric has better specific ballistic performance in comparison to its neat counterparts. For multifunctional structural applications using lightweight composites, combining this improved ballistic functionality with an acoustic functionality is desirable. In this study, acoustic characterization of neat and SNK samples is conducted using the normal-incidence impedance tube method. Both the absorption coefficient and transmission loss (TL) are measured in the 60–6000 Hz frequency range. The influence of parameters such as number of layers of neat or treated fabric, percentage by weight of nanoparticle addition, spacing between fabric layers, and residual porosity is examined. It is found that while absorption decreases with an increase in nanoparticle addition for frequencies above about 2500 Hz, increasing the number of layers shifts peak absorption to lower frequencies. By introducing an air-gap behind the fabric layer, dominant low-frequency (1000–3000 Hz) absorption peaks are obtained that correlate well with natural modes of mass-equivalent thin plates. Examining the influence of residual porosity by laminating the SNK samples reveals that it contributes to about 30–50% of the total absorption. Above about 1500 Hz, 3–5 dB of TL increase is obtained for SNK samples vis-à-vis the neat samples. TL is found to increase beyond that of the neat sample above a threshold frequency when an air-gap is introduced between two SNK layers. With an increase in the weight of nanoparticle addition, measured TL tends to be closer to mass law predictions. This study demonstrates that SNK fabric could provide improved acoustic performance in addition to its ballistic capabilities, making it suitable for multifunctional applications and could form the basis for the development of simplified models to predict the structural acoustic response of such nanoparticle–fabric composites.


2021 ◽  
Vol 11 (13) ◽  
pp. 5924
Author(s):  
Elisa Levi ◽  
Simona Sgarbi ◽  
Edoardo Alessio Piana

From a circular economy perspective, the acoustic characterization of steelwork by-products is a topic worth investigating, especially because little or no literature can be found on this subject. The possibility to reuse and add value to a large amount of this kind of waste material can lead to significant economic and environmental benefits. Once properly analyzed and optimized, these by-products can become a valuable alternative to conventional materials for noise control applications. The main acoustic properties of these materials can be investigated by means of a four-microphone impedance tube. Through an inverse technique, it is then possible to derive some non-acoustic properties of interest, useful to physically characterize the structure of the materials. The inverse method adopted in this paper is founded on the Johnson–Champoux–Allard model and uses a standard minimization procedure based on the difference between the sound absorption coefficients obtained experimentally and predicted by the Johnson–Champoux–Allard model. The results obtained are consistent with other literature data for similar materials. The knowledge of the physical parameters retrieved applying this technique (porosity, airflow resistivity, tortuosity, viscous and thermal characteristic length) is fundamental for the acoustic optimization of the porous materials in the case of future applications.


Author(s):  
Paolo La Torraca ◽  
Luca Larcher ◽  
Paolo Lugli ◽  
Marco Bobinger ◽  
Francisco J. Romero ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 4011
Author(s):  
Alfredo Sánchez-Bautista ◽  
Ester M. Palmero ◽  
Alberto J. Moya ◽  
Diego Gómez-Díaz ◽  
M. Dolores La Rubia

There are a lot of research programs focusing on the development of new solvents for carbon dioxide capture. The most important priority should be reducing the energy consumption needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP: 1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density, viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration capacity, and the corrosivity of these solvents are also evaluated.


Sign in / Sign up

Export Citation Format

Share Document