scholarly journals Analysis of Gas-Liquid Flow in an Aerated Reactor Equipped with a Coaxial Mixer through Tomography and CFD

Author(s):  
Nasim Hashemi

This doctoral thesis addresses the mixing of highly viscous Newtonian fluids (corn syrup solutions) in a novel aerated reactor equipped with a central impeller (a pitched blade turbine in upward or downward pumping mode) and a wall scraping anchor. The non-intrusive electrical resistance tomography (ERT), dynamic gas disengagement method (DGD), design of experiments (DOE), computational fluid dynamics (CFD), and population balance model (PBM) were employed to characterize the performance of this novel aerated system. The performance criteria to be examined were mixing time, power uptake, gas holdup, and bubble size distribution. In this study, novel correlations were developed to estimate the gassed power drawn by the coaxial mixer, mixing time, and gas holdup. In addition, to obtain a master power curve, two new dimensionless correlations were proposed for the generalized power number and gas flow number by incorporating the equivalent rotational speed for the coaxial mixer, speed ratio (central impeller speed/anchor speed), and the central impeller power fraction into these two correlations. The experimental data demonstrated that gas flow affected the aerated anchor power consumption and central impeller power consumption in different manners. It was also found that at the higher fluid viscosity and beyond the critical speed ratio of 10, the anchor power consumption was increased by increasing the speed ratio (i.e. decreasing the anchor speed). It was shown that in the presence of gas, the anchor impeller in combination with the upward pumping pitched blade turbine in the co-rotating mode exhibited shorter mixing times and lower power consumption than the anchor-downward pumping pitched blade coaxial mixer. To enhance the efficiency of the aerated mixer, it is critical to investigate the influence of the gas-liquid flow within the vessel on the bubble size distribution (BSD) and the local and global gas holdup. To achieve this goal, the effects of the bubble breakup and coalescence on the BSD within the vessel were incorporated into the CFD model through the CFD-PBM coupling. The experimental and simulation results showed that beyond the critical speed ratio of 10, the volume fractions of the large bubbles decreased while the volume fractions of the small bubbles increased.

2021 ◽  
Author(s):  
Nasim Hashemi

This doctoral thesis addresses the mixing of highly viscous Newtonian fluids (corn syrup solutions) in a novel aerated reactor equipped with a central impeller (a pitched blade turbine in upward or downward pumping mode) and a wall scraping anchor. The non-intrusive electrical resistance tomography (ERT), dynamic gas disengagement method (DGD), design of experiments (DOE), computational fluid dynamics (CFD), and population balance model (PBM) were employed to characterize the performance of this novel aerated system. The performance criteria to be examined were mixing time, power uptake, gas holdup, and bubble size distribution. In this study, novel correlations were developed to estimate the gassed power drawn by the coaxial mixer, mixing time, and gas holdup. In addition, to obtain a master power curve, two new dimensionless correlations were proposed for the generalized power number and gas flow number by incorporating the equivalent rotational speed for the coaxial mixer, speed ratio (central impeller speed/anchor speed), and the central impeller power fraction into these two correlations. The experimental data demonstrated that gas flow affected the aerated anchor power consumption and central impeller power consumption in different manners. It was also found that at the higher fluid viscosity and beyond the critical speed ratio of 10, the anchor power consumption was increased by increasing the speed ratio (i.e. decreasing the anchor speed). It was shown that in the presence of gas, the anchor impeller in combination with the upward pumping pitched blade turbine in the co-rotating mode exhibited shorter mixing times and lower power consumption than the anchor-downward pumping pitched blade coaxial mixer. To enhance the efficiency of the aerated mixer, it is critical to investigate the influence of the gas-liquid flow within the vessel on the bubble size distribution (BSD) and the local and global gas holdup. To achieve this goal, the effects of the bubble breakup and coalescence on the BSD within the vessel were incorporated into the CFD model through the CFD-PBM coupling. The experimental and simulation results showed that beyond the critical speed ratio of 10, the volume fractions of the large bubbles decreased while the volume fractions of the small bubbles increased.


2019 ◽  
Vol 20 (22) ◽  
pp. 5757 ◽  
Author(s):  
Pin Shao ◽  
Lepeng Jiang

A mathematical model was developed to describe gas–liquid flow and mixing behavior in a new bottom blown oxygen copper smelting furnace, and the model validation was carried out through a water model experiment. The effects of different nozzle locations, nozzle numbers, and gas flow rates on the gas–liquid flow, gas total volume, and mixing efficiency were investigated. The results show that the gas–liquid two-phase flow and mixing time predicted by the present model agree well with the experimental data. When the nozzles are located near the center of the bath bottom, the gas total volume is larger, but the mixing efficiency is very low. With the increase of nozzle arrangement angle, the mixing time decreased. However, the excessive angle arrangement of nozzles exceeding 21° was found to be detrimental to the bubble residence time and mixing efficiency. With the increase in nozzle numbers from nine to 13, the gas total volume in the furnace increases, and the mixing efficiency does not change greatly. When the number of nozzles is further increased to 18, the mixing efficiency begins to decrease significantly. As the gas flow rate increases from 4.7 m3/h to 14.1 m3/h, the gas total volume in the furnace increases, and the mixing time is rapidly reduced from 314.5 s to 251.5 s. When the gas flow rate exceeds 18.8 m3/h, the gas total volume and mixing efficiency change little.


Author(s):  
Xinju Li ◽  
Xiaoping Guan ◽  
Rongtao Zhou ◽  
Ning Yang ◽  
Mingyan Liu

Abstract3D Eulerian-Eulerian model was applied to simulate the gas-liquid two-phase flow in a stirred tank of dual Rushton turbines using computational fluid dynamics (CFD). The effects of two different bubble treatment methods (constant bubble sizevs. population balance model, PBM) and two different coalescence models (Luo modelvs. Zaichik model) on the prediction of liquid flow field, local gas holdup or bubble size distribution were studied. The results indicate that there is less difference between the predictions of liquid flow field and gas holdup using the above models, and the use of PBM did not show any advantage over the constant bubble size model under lower gas holdup. However, bubble treatment methods have great influence on the local gas holdup under larger gas flow rate. All the models could reasonably predict the gas holdup distribution in the tank operated at a low aeration rate except the region far from the shaft. Different coalescence models have great influence on the prediction of bubble size distribution (BSD). Both the Luo model and Zaichik model could qualitatively estimate the BSD, showing the turning points near the impellers along the height, but the quantitative agreement with experiments is not achieved. The former over-predicts the BSD and the latter under-predicts, showing that the existing PBM models need to be further developed to incorporate more physics.


2016 ◽  
Vol 37 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Paweł Sobieszuk ◽  
Karolina Napieralska

Abstract The paper presents an investigation of mass transfer in gas-liquid annular flow in a microreactor. The microreactor had a meandered shape with a square cross-section of the channel (292×292 μm, hydraulic diameter 292 μm) and 250 mm in length. The rate of CO2 absorption from the CO2/N2 mixture in NaOH (0.1 M, 0.2 M, 0.7 M, 1.0 M and 1.5 M) water solutions was measured. Two velocities of gas flow and two velocities of liquid flow were used. In two cases a fully developed annular flow at the beginning of the channel was observed, whilst in two cases annular flow was formed only in about 2/3 of the microchannel length. Based on the measurements of CO2 absorption rate, the values of volumetric liquid - side mass transfer coefficients with the chemical reaction were determined. Then physical values of coefficients were found. Obtained results were discussed and their values were compared with the values predicted by literature correlations.


Author(s):  
Dmitry Vladimirovich Gradov ◽  
Arto Laari ◽  
Ilkka Turunen ◽  
Tuomas Koiranen

Abstract Hydrodynamics of gas-liquid flow in a round-bottom stirred tank is modelled at two gas flow rates, constant bubble size and agitator speed of 300 rpm. A round-bottom tank equipped with four baffles and a Rushton turbine was chosen to represent a typical reactor used in hydrometallurgical processes operating under pressure. The applicability of different momentum interchange models and the Realizable k-ε, SST k-ω, and RSM turbulence models was studied using CFD software. The results were compared and validated against experimental data from Particle Image Velocimetry measurements by means of liquid and gas velocity distributions. In addition, energy balance between power input and dissipation energy was compared for the different turbulence models. The CFD model was found to be in good agreement with the measurements. Of the turbulence models studied, the Realizable k-ε model showed best agreement with the measured velocity profiles. Popular drag force models proposed in the literature were assessed, as was the influence of inclusion of non-drag forces. Gas flow was found to affect the liquid phase flow in the tank by generating an additional secondary circulation loop in the upper part of the reactor.


2021 ◽  
pp. 47-50

The research was to determine the more efficient design of the swirler from the point of view of hydrodynamics and heat and its optimal parameters. Various swirl designs were manufactured and tested. After preliminary studies conducted on a laboratory installation with a glass working apparatus, several swirlers were selected taking into account their hydraulic resistance, the structure of the swirling gas-liquid flow, and the amount of liquid entrainment by gas. The results of an experimental study of the hydrodynamics of a hollow vortex apparatus with one and two tangential and axial swirlers. Hydraulic losses in the channel and in the swirls during the direct downward movement of gas and gas-liquid flow are determined. In addition, studies of the hydraulic resistance of a vortex-type device allow us to determine the energy consumption of this device for conducting complex processes of dust collection and absorption or contact heat exchange. The hydraulic resistance in the presence of a liquid film is higher than in the case of a single-phase gas flow. The pressure drop in the studied vortex apparatus does not exceed the resistance of high-performance cyclones and vortex-type devices of other designs. The effect of the twist coefficient of gas swirlers, gas velocity, and liquid flow on the pressure drop in the vortex apparatus is established


2016 ◽  
Vol 859 ◽  
pp. 153-157
Author(s):  
Pao Chi Chen ◽  
Sheng Zhong Lin

This work uses a continuous bubble-column scrubber for the absorption of CO2 with a 5M MEA solution under a constant pH environment to explore the effect of the pH of the solution and gas-flow rate (Qg) on the removal efficiency (E), absorption rate (RA), overall mass-transfer coefficient (KGa), liquid flow rate (QL), gas-liquid flow ratio (γ), and scrubbing factors (φ). From the outlet CO2 concentration with a two-film model, E, RA, KGa, QL, γ, and φ can be simultaneously determined at the steady state. Depending on the operating conditions, the results show that E (80-97%), RA(2.91x10-4-10.0x10-4mol/s-L), KGa (0.09-0.48 1/s), QL(8.74-230.8mL/min), γ (0.19-5.39), and φ (0.031-0.74 mol/mol-L) are found to be comparable with other solvents. In addition, RA, KGa, E, and QL have been used to correlate with pH and Qg, respectively, with the results further explained.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 565 ◽  
Author(s):  
Hongliang Zhao ◽  
Tingting Lu ◽  
Pan Yin ◽  
Liangzhao Mu ◽  
Fengqin Liu

In this study, a water-model experiment and numerical simulation were carried out in a pilot ISASMELT furnace to study the factors affecting mixing time. The experimental results were compared to the simulation results to test the accuracy of the latter. To study the internal factors that affect the mixing time, the turbulent viscosity and flow field were calculated using simulation. In addition, following previous research, external factors that influence the mixing time including the depth of the submerged lance, lance diameter, gas flow rate, and the presence of a swirler were studied to investigate their effect on the flow regime. The results indicated that the mixing time is controlled by the turbulent viscosity and velocity vector. In addition, it was found that the lance diameter should not exceed 3.55 cm to maintain sufficient energy for stirring the bath. Finally, the optimal gas flow rate that offers the best mixing efficiency was found to be 50 Nm3/h.


Sign in / Sign up

Export Citation Format

Share Document