scholarly journals The acyltransferase lycat controls specific phosphoinositides and related membrane traffic and hormone receptor signaling

Author(s):  
Leslie N. Bone

Phosphoinositdes (PIPs) are a group of signaling phospholipids involved in regulating many cellular processes, including organelle dynamics, nutrient uptake, autophagy and apoptosis. Through the action of lipid kinases and phosphatases, phosphatidylinositol (PI) can be phosphorylated on three different positions of the inositol headgroup resulting in seven distinct PIP species. Substantial research has focused on elucidating the function and importance of headgroup phosphorylation while much less is known about the significance of the incorporation of specific acyl chains within PI. PI exhibits unique specificity of acyl chain composition, where majority contains 1-stearoyl-2-arachidonoyl acyl species. This unique acyl chain enrichment is, in part, controlled by the PI acyltransferase lysocardiolipin acyltransferase (LYCAT). How LYCAT and, in turn, incorporation of specific fatty acids, controls the function of PI and PIPs is poorly understood. Thus, I investigated the impact of LYCAT perturbation on PIP acyl profile and effects on PIP-dependent processes. Perturbation of LYCAT by siRNA gene silencing resulted in a shift in the acyl profile of PIP2 species to contain shorter species. Additionally, LYCAT silencing altered the cellular localization and levels of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3-phosphate but was without effect on other PI species examined. Consistent with this, silencing of LYCAT perturbed the membrane traffic of transferrin receptor dependent on these specific PIPs. I also observed changes in PI-dependent receptor tyrosine kinase signaling pathways that control cell survival and proliferation, which are regulated by phosphatidylinositol-3,4,5-trisphosphate. LYCAT perturbation altered activation of Akt1, which impacted a number of Akt substrates. Additionally, using fluorescence microscopy, I discovered that LYCAT is localized to peripheral ER vesicles that contain PI synthase enzyme, which is responsible for PI synthesis. These peripheral vesicles partially overlap with endoplasmic reticulum-plasma membrane contact sites marked by E-Syt2 but showed little overlap with the ER maker, KDEL. Collectively, my results show that the PI acyltransferase LYCAT controls the function of specific species of PIPs, which in turn selectively impacts specific stages of endomembrane traffic and hormone receptor signaling. Hence, the regulation of acyl content of PI is an important new dimension for the control of PI and PIP function.

2021 ◽  
Author(s):  
Leslie N. Bone

Phosphoinositdes (PIPs) are a group of signaling phospholipids involved in regulating many cellular processes, including organelle dynamics, nutrient uptake, autophagy and apoptosis. Through the action of lipid kinases and phosphatases, phosphatidylinositol (PI) can be phosphorylated on three different positions of the inositol headgroup resulting in seven distinct PIP species. Substantial research has focused on elucidating the function and importance of headgroup phosphorylation while much less is known about the significance of the incorporation of specific acyl chains within PI. PI exhibits unique specificity of acyl chain composition, where majority contains 1-stearoyl-2-arachidonoyl acyl species. This unique acyl chain enrichment is, in part, controlled by the PI acyltransferase lysocardiolipin acyltransferase (LYCAT). How LYCAT and, in turn, incorporation of specific fatty acids, controls the function of PI and PIPs is poorly understood. Thus, I investigated the impact of LYCAT perturbation on PIP acyl profile and effects on PIP-dependent processes. Perturbation of LYCAT by siRNA gene silencing resulted in a shift in the acyl profile of PIP2 species to contain shorter species. Additionally, LYCAT silencing altered the cellular localization and levels of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3-phosphate but was without effect on other PI species examined. Consistent with this, silencing of LYCAT perturbed the membrane traffic of transferrin receptor dependent on these specific PIPs. I also observed changes in PI-dependent receptor tyrosine kinase signaling pathways that control cell survival and proliferation, which are regulated by phosphatidylinositol-3,4,5-trisphosphate. LYCAT perturbation altered activation of Akt1, which impacted a number of Akt substrates. Additionally, using fluorescence microscopy, I discovered that LYCAT is localized to peripheral ER vesicles that contain PI synthase enzyme, which is responsible for PI synthesis. These peripheral vesicles partially overlap with endoplasmic reticulum-plasma membrane contact sites marked by E-Syt2 but showed little overlap with the ER maker, KDEL. Collectively, my results show that the PI acyltransferase LYCAT controls the function of specific species of PIPs, which in turn selectively impacts specific stages of endomembrane traffic and hormone receptor signaling. Hence, the regulation of acyl content of PI is an important new dimension for the control of PI and PIP function.


2019 ◽  
Vol 20 (14) ◽  
pp. 3564 ◽  
Author(s):  
Luciana M. Pujol-Lereis

Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer’s Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.


JMS SKIMS ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 104-106
Author(s):  
Javaid Ahmad Bhat ◽  
Moomin Hussain Bhat ◽  
Hilal Bhat ◽  
Mona Sood ◽  
Shariq Rashid Masoodi

Background : Laron & colleagues (1966) reported a rare genetic disorder in Israliei Jewish sublings which was characterized by insensitivity to growth hormone due to abnormality in growth hormone receptor or post receptor signaling pathway.Case Report: We hereby report a case of a 5 year old female child who presented to us with features similar to Laron syndrome. The diagnosis was made & confirmed by various Lab. investigations like low IGF-I levels and managed accordingly. JMS 2017; 20 (2):104-106  


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Sarah Fruehwirth ◽  
Sandra Egger ◽  
Dennis Kurzbach ◽  
Jakob Windisch ◽  
Franz Jirsa ◽  
...  

This study reports the impact of margarine-representative ingredients on its oxidative stability and green tea extract as a promising antioxidant in margarine. Oil-in-water emulsions received much attention regarding factors that influence their oxidative stability, however, water-in-oil emulsions have only been scarcely investigated. Margarine, a widely consumed water-in-oil emulsion, consists of 80–90% fat and is thermally treated when used for baking. As different types of margarine contain varying additives, their impact on the oxidative stability of margarine during processing is of pressing importance. Thus, the influence of different ingredients, such as emulsifiers, antioxidants, citric acid, β-carotene and NaCl on the oxidative stability of margarine, heated at 80 °C for 1 h to accelerate lipid oxidation, was analyzed by the peroxide value and oxidation induction time. We found that monoglycerides influenced lipid oxidation depending on their fatty acyl chain. α-Tocopheryl acetate promoted lipid oxidation, while rosemary and green tea extract led to the opposite. Whereas green tea extract alone showed the most prominent antioxidant effect, combinations of green tea extract with citric acid, β-carotene or NaCl increased lipid oxidation in margarine. Complementary, NMR data suggested that polyphenols in green tea extracts might decrease lipid mobility at the surface of the water droplets, which might lead to chelating of transition metals at the interface and decreasing lipid oxidation.


Peptides ◽  
2009 ◽  
Vol 30 (12) ◽  
pp. 2483-2486 ◽  
Author(s):  
Keisuke Maruyama ◽  
Kohei Wada ◽  
Kotaro Ishiguro ◽  
Sei-Ichi Shimakura ◽  
Tatsuya Wakasugi ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Alessandra Luchini ◽  
Giacomo Corucci ◽  
Krishna Chaithanya Batchu ◽  
Valerie Laux ◽  
Michael Haertlein ◽  
...  

Eukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms. In this study we focused on single phospholipid classes, i.e. Pichia pastoris phosphatidylcholine (PC) and Escherichia coli phosphatidylglycerol (PG) lipids. These lipids were characterized by a different distribution of their respective acyl chain lengths and number of unsaturations. We produced both hydrogenous and deuterated lipid mixtures. Neutron diffraction experiments at different relative humidities were performed to characterize multilayers from these lipids and investigate the impact of the acyl chain composition on the structural organization. The novelty of this work resides in the use of natural extracts with a single class head-group and a mixture of chain compositions coming from yeast or bacterial cells. The characterization of the PC and PG multilayers showed that, as a consequence of the heterogeneity of their acyl chain composition, different lamellar phases are formed.


2010 ◽  
Vol 120 (11) ◽  
pp. 4007-4020 ◽  
Author(s):  
Mahendra D. Mavalli ◽  
Douglas J. DiGirolamo ◽  
Yong Fan ◽  
Ryan C. Riddle ◽  
Kenneth S. Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document