Modeling of Intensified Heat Exchangers with Different Fluid Viscosities

2021 ◽  
Vol 628 (6) ◽  
pp. 44-50
Author(s):  
A. G. Laptev ◽  
◽  
E. A. Lapteva ◽  
A. A. Akhmitshin ◽  
◽  
...  

Equations are derived for mean friction and heat transfer coefficients to solve problems of updating industrial plants for getting oil fractions based on application of approximate method of modeling momentum and heat transfer in heat exchangers with surface intensifiers. The Dyssler and Van-Driest turbulent boundary-layer model is used for the turbulent viscosity function for a flat smooth wall. An equation for the Stanton number is written using Chilton-Colborne hydrodynamic analogy and agreement with the known analogy is shown. Identical local properties of turbulent motion in a boundary layer on a plate and in a near-wall layer of a tube and the conservative properties of the laws of friction and heat transfer to turbulences, which are taken account of parametrically, are used for modeling momentum and heat transfer in channels with surface intensifiers. An equation for mean tangential stress in channels with intensifiers and, further, an equation for the Nusselt number is derived using a dissipative model. The results of calculations and comparison with the known experimental investigations are given for tubes with surface wire inserts, with spiral finning and rectangular projections for transformer oil at Reynolds numbers 200 < Re <2000. Thus, the adequacy of the developed mathematical model is proved in a wide range of operating and design parameters and thermophysical properties of fluids and gases. Further, the hydraulic resistance of the channel is the key experimental information about the object of modeling. Examples of use of mathematical model for designing and commissioning heat exchangers in petroleum fuels fractionating plants at industrial enterprises in the Russian Federation and abroad are given.

1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


2002 ◽  
Vol 29 (2) ◽  
pp. 2847-2854 ◽  
Author(s):  
Jiro Kasahara ◽  
Kouki Takazawa ◽  
Takakage Arai ◽  
Yu Tanahashi ◽  
Shingo Chiba ◽  
...  

Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


Author(s):  
Rebekah A. Russin ◽  
Daniel Alfred ◽  
Lesley M. Wright

This paper presents the development of a novel experimental technique utilizing both temperature and pressure sensitive paints (TSP and PSP). Through the combination of these paints, both detailed heat transfer coefficient and film cooling effectiveness distributions can be obtained from two short experiments. Using a mass transfer analogy, PSP has proven to be a powerful technique for measurement of film cooling effectiveness. This benefit is exploited to obtain detailed film cooling effectiveness distributions from a steady state flow experiment. This measured film cooling effectiveness is combined with transient temperature distributions obtained from a transient TSP experiment to produce detailed heat transfer coefficient distributions. Optical filters are used to differentiate the light emission from the florescent molecules comprising the PSP and TSP. Although two separate tests are needed to obtain the heat transfer coefficient distributions, the two tests can be performed in succession to minimize setup time and variability. The detailed film effectiveness and heat transfer enhancement ratios have been obtained for a generic, inclined angle (θ = 35°) hole geometry on a flat plate. Distinctive flow features over a wide range of blowing ratios have been captured with the proposed technique. In addition, the measured results have compared favorably to previous studies (both qualitatively and quantitatively), thus substantiating the use of the combined PSP / TSP technique for experimental investigations of three temperature mixing problems.


Author(s):  
M M Molla ◽  
M A Hossain ◽  
R S R Gorla

The effect of thermal radiation on a steady two-dimensional natural convection laminar boundary layer flow of a viscous incompressible optically thick fluid over a vertical wavy frustum of a cone has been investigated. The boundary layer regime when the Grashof number Gr is large is considered. Using appropriate transformations, the basic governing equations are transformed into a dimensionless form and then solved numerically employing two efficient methods, namely: (a) implicit finite difference method together with Keller-box scheme and (b) direct numerical scheme. Numerical results are presented by streamline, isotherms, velocity and temperature distribution of the fluid, as well as the local shearing stress in terms of the local skin-friction coefficient, the local heat transfer rate in terms of local Nusselt number, and the average rate of heat transfer for a wide range of the radiation—conduction parameter or Planck number Rd and the surface heating parameter θw.


Author(s):  
A. K. M. Monayem H. Mazumder ◽  
F. C. Lai

In this study, enhancement in forced convection inside a square channel by a two-stage electrohydrodynamic (EHD) gas pump has been examined by numerical simulations. The EHD gas pump with 28 emitting electrodes in each stage has been evaluated for a wide range of operating voltages starting from the corona threshold voltage up to 28 kV for further improvement in its performance over that of a single-stage. To achieve the maximum enhancement in heat transfer, the emitting electrodes of the corona wind generator are flush mounted on the channel walls so that the corona wind produced directly perturbs the boundary layer. The results show that EHD technique has a great potential for applications in thermal management.


1983 ◽  
Vol 105 (3) ◽  
pp. 605-610 ◽  
Author(s):  
J. M. Robertson ◽  
P. C. Lovegrove

The results of laboratory experiments with Freon 11 (R11) flowing in an electrically heated, serrated-fin test section to measure local boiling coefficients over a wide range of vapor quality, with mass fluxes up to 150 kg/m2 s, heat fluxes to 4 kW/m2, and pressure from 3–7 bar, are reported. These low mass and heat fluxes reflect the industrial process application of these heat exchangers where exceedingly small temperature differences may exist between streams. Results are compared with the very similar boiling characteristics previously reported elsewhere for the same test section, with liquid nitrogen as a test fluid under comparable flow conditions. A simple method using the Reynolds number of the total flow regarded as a liquid has been used to correlate boiling heat transfer coefficients with quality for both fluids. The use of a liquid-film flow model to produce a nondimensional correlation connecting the Nusselt, Reynolds, and Prandtl numbers of the film is discussed.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
L. Liu ◽  
A. M. Jacobi

A study of condensate retention and the attendant thermal-hydraulic effect associated with changes in air-side surface wettability is presented for a series of slit-fin-and-tube heat exchangers of identical geometry with controlled wettability covering a wide range of contact angles. An experiment in which the retained mass of air-side condensate was measured under dynamic conditions is described, and the results are analyzed using conventional thermal-hydraulic measurements of j and f. The data demonstrate that for the heat exchangers used in this study, the j factor is not strongly influenced by condensate retention, but the friction factor is significantly reduced for surfaces of increased wettability. Hydrophilic heat exchangers retain much less air-side condensate than do the hydrophobic heat exchangers, and the amount of retention is found to depend on the air-side Reynolds number (Redh) and the rate of latent heat transfer (Ql). Based on an assumption of filmwise condensation, a new model for predicting the mass of retained condensate is described and compared with the steady-sate retention data. The model is successful in predicting retained condensate over a wide range of tested conditions. The potential of this new approach and possible refinements that will add engineering value are discussed.


Author(s):  
Tong Lv ◽  
Boren Zheng ◽  
Wei Li ◽  
Zahid Ayub

Abstract Corrugated plate heat exchangers are increasingly used in two-phase flow applications for their flexible and compact size and the efficient heat transfer performance. This paper presents a review of recent studies on the subject and creates a database containing 533 data points from experiment studies. The collected database covers seven working fluids, a wide range of vapor quality (both mean and local) 0.01–0.94, heat flux 0.5–46 kW m−2, mass flux 5.5–137 kg m−2 s−1, chevron angle 30°–70°, and hydraulic diameter 1.7–4.0 mm. Based on the database a brief comparison between several previous correlations are discussed. A new prediction method for flow boiling heat transfer coefficient is generated by multiple regression analysis and modifying an existing correlation. It was observed that the modified correlation shows a better agreement and predicts 74.3% of data points within ±30% error band and 94.9% within ±50% error band.


Sign in / Sign up

Export Citation Format

Share Document