scholarly journals Technological evaluation of Pinus maximinoi wood for industrial use in kraft pulp production

TAPPI Journal ◽  
2021 ◽  
Vol 20 (8) ◽  
pp. 501-508
Author(s):  
MARINA ULIAN COELHO ◽  
FRANCIDES GOMES DA SILVA, JR. ◽  
FLAVIANA REIS MILAGRES ◽  
SILVANA MEISTER SOMMER ◽  
CARLOS AUGUSTO SOARES DO AMARAL ◽  
...  

This study characterized Pinus maximinoi wood and evaluated its performance for pulp production. Samples of Pinus taeda wood were used as reference material. For both species, wood chips from 14-year-old trees were used for the technological characterization, pulping, bleaching process analysis, and pulp properties. A modified kraft pulping process was carried out targeting kappa number 28±5% on brownstock pulp. The bleaching sequence was applied for bleached pulp with final brightness of 87±1 % ISO. Refinability and resistance properties were measured in the bleached pulps. Compared to P. taeda wood, P. maximinoi showed slightly higher basic density (0.399 g/cm³) and higher holocellulose (64.5%), lignin (31.1%), and extractives content (4.5%), along with lower ash content (0.16%). P. maximinoi tracheids showed greater wall thickness (6.4 µm) when compared to P. taeda tracheids. For the same kappa number, P. maximinoi and P. taeda resulted in similar screened yield, with an advantage observed for P. maximinoi, which resulted in lower specific wood consumption (5.281 m³/o.d. metric ton), and lower black liquor solids (1.613 metric tons/o.d. metric ton). After oxygen delignification, P. maximinoi pulp showed higher efficiency on kappa reduction (67.2%) and similar bleaching chemical demand as P. taeda pulp. Compared to P. taeda pulps, the refined P. maximinoi pulps had similar results and the bulk property was 10% higher. Results showed that P. maximinoi is an interesting alternative raw material for softwood pulp production in Brazil.

2005 ◽  
Vol 29 (3) ◽  
pp. 489-494 ◽  
Author(s):  
Leonel F. Torres ◽  
Roberto Melo ◽  
Jorge Luiz Colodette

The use of 12-year-old Pinus tecunumanii (Eguiluz e Perry) grown in Colombia was evaluated for bleached kraft pulp production. Kraft pulps of kappa number 30 ± 1 were produced, and oxygen delignified and bleached to 90% ISO with ECF processes. The bleached pulps produced under optimum conditions were evaluated with regard to their strength properties. Pinus tecunumanii wood required low effective alkali charge to reach the desired kappa number and the unbleached pulp showed high oxygen delignification efficiency and bleachability when a OD(EO)DED sequence was used. The bleached pulps presented good physical-mechanical properties, which are comparable to those obtained with more traditional pines such as Pinus taeda and Pinus radiata. The results demonstrate that this tropical pine species is a suitable raw material for bleached kraft pulp production


2011 ◽  
Vol 418-420 ◽  
pp. 2241-2244
Author(s):  
Pei Yi Li ◽  
Mei Yun Zhang ◽  
Xin Xing Xia ◽  
Chun Tao Lin

Bamboo, as a kind of non-wood raw material, has a long, thin fiber with wide distribution and rich abundance in China. Its pulping properties are between softwood and hardwood. Adapting to the Chinese situation, developing bamboo pulp industrialization, according to the local conditions, is an available way to solve the shortage of fiber material for paper-making. Delignification of bamboo (Neosinocalamus) was carried out by conventional kraft and soda pulping under varying conditions to determine the relationships between selected cooking parameters (EA 14~20%, sulfidity 0~40%, maximum temperature 160 and 165°C, and time at maximum temperature 60~110 min) and pulp properties (kappa number and yield). Results indicated that in order to obtain relatively low kappa numbers(17~27), high sulfidity(20~40%) at lower EA(14~16%) increased pulp yield compared to the case of low sulfidity(0~10%) at higher EA(16~18%). Pulp with lower kappa numbers (13~15) and acceptable yield can be obtained at a sulfidity level of 20~30% with 18% EA or at a sulfidity level of 10~30% with 20% EA. Meanwhile, bamboo pulp in this condition not only helps to decrease kappa number in the subsequent oxygen delignification process, but also reduces the cost of chemicals in the bleaching process.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 73-81 ◽  
Author(s):  
GISELY SAMISTRARO ◽  
PETER W. HART ◽  
JORGE LUIZ COLODETTE ◽  
RICARDO PAIM

Eucalyptus dunii has been commercially used in southern Brazil because of its relatively good frost tolerance and adequate productivity in the winter months. More recently, interest has grown in cultivating Eucalyptus benthamii Maiden & Cambage, which presents even superior frost tolerance compared to E. dunii and is highly productive as well. The quality of E. benthamii for pulp production is not yet proven. Thus, the chemical, anatomical, and technological aspects of pulp made from E. benthamii were compared with those of E. dunii for unbleached paper production. Samples of E. benthamii chips were obtained and analyzed for their basic density, chemical composition, higher heating value, trace elemental analysis, and chip size distribution. The chips were kraft cooked using conditions that produced a 74 ± 6 kappa number. The pulps were characterized for kappa number, yield, viscosity, and morphologic characteristics (e.g., length, wall thickness, and coarseness). Black liquor was analyzed for total solids, organics, inorganics, sodium sulfide, sodium hydroxide, and sodium carbonate. Brownstocks were beaten at five different energy levels in a Valley beater, and the physical strength properties of 120 g/m² handsheets were measured to develop a beater curve. The results of this study showed differences in delignification between the two woods and lower pulp yield for E. benthamii , which are related to their chemical compositions and basic densities. The E. benthamii studied in this work exhibited higher amounts of lignin and extractives, lower carbohydrate content, and lower basic density. However, cooking a blend of the two woods afforded good results in pulping and in physical pulp properties.


2019 ◽  
Vol 6 (4) ◽  
pp. 791 ◽  
Author(s):  
Eraldo Antonio Bonfatti Júnior ◽  
Elaine Cristina Lengowski ◽  
Alan Sulato de Andrade ◽  
Ivan Venson ◽  
Umberto Klock ◽  
...  

Despite of the wide use worldwide, the industrial potential of bamboo species in Brazil is not much investigated. However, some encouragement to revert this situation was created in last few years. The aim of this research was to evaluate the technological characteristics of the Bambusa vulgaris biomass for the production of pulp by the kraft process. The technological characteristics of the raw material were determined by the basic density, the chemical composition and the morphology of the fibers. The cooking process was carried out with the application of eight charges of active alkali, in 90 minutes of heating time and 60 minutes in the maximum temperature of 170ºC. All analyzes were also executed with the Eucalyptus spp. and the Pinus spp., in order to make a complete comparison among the species Bambusa vulgaris and the two most used raw materials for the pulp production in Brazil. The Bambusa vulgaris presented a higher basic density, lower holocellulose content and a higher total extractive content. Its fibers have intermediate length and wall thickness, similar to the Eucalyptus spp. and the Pinus spp. Considering the kraft pulping process, the species Bambusa vulgaris demonstrated to be easier to delignify besides presenting almost zero reject content and smaller consumption of active alkali. However, the Eucalyptus spp. and the Pinus spp. obtained the best yields, the lowest specific consumption of raw material and better selectivities.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Tiago Segura ◽  
Francides Da Silva, Jr.

This work characterizes the wood from Corymbia citriodora for pulp production. We evaluated wood chip samples from an 8-year-old C. citriodora plantation. A sample of Eucalyptus grandis x Eucalyptus urophylla chips from a 7-year-old plantation was used as reference material. Wood fiber morphology and chemical composition were analyzed. A modified kraft pulping was carried out to achieve kappa 18 on brownstock pulps. After that, pulps were oxygen delignified, and then underwent elemental chlorine free (ECF) bleaching to achieve the target brightness of 90±0.5% ISO. The bleached pulps were refined in a PFI mill at 0, 750, 1500, and 3000 revolutions, and their physical-mechanical properties were analyzed. C. citriodora wood had a relatively high wood basic density (0.568 g/cm³), low lignin content (22.3%), and high holocellulose content (73.1%) compared with E. grandis x E. urophylla. The fibers of this species had 1.07 mm length, 16.1 μm width, and 66% wall fraction, which reflect its high basic density. For the same kappa number, C. citriodora and E. grandis x E. urophylla yields were similar – the main pulping highlight for this wood species is the low specific wood consumption – 2.93 m³/a.d. ton. C. citriodora pulp had a relatively lower kappa number after oxygen delignification and lower bleaching chemical demand than Eucalyptus pulp. C. citriodora pulp had a high specific volume and capillarity, and low water retention value. The physical properties of C. citriodora suggest that it might be suitable for use in tissue paper manufacturing.


2015 ◽  
Vol 39 (2) ◽  
pp. 395-403
Author(s):  
Djeison Cesar Batista ◽  
Márcio Pereira da Rocha ◽  
Ricardo Jorge Klitzke

It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.


2011 ◽  
Vol 236-238 ◽  
pp. 1431-1436
Author(s):  
Jing Liu ◽  
Katsuya Nagata

Alkaline sulfite/anthraquinone (AS/AQ) pulping of wheat straw under different conditions was conducted in this study. A transition point of kappa number at approximately 6.5 was observed based on all experimental results. This transition point can be regarded as the phase transfer point in AS/AQ pulping from bulk to residual delignification. Effective delignification without great lost of pulp yield can be achieved before kappa number was below this transition point during AS/AQ pulping of wheat straw. It is found that the ratio of cooking liquid to solid should not be lower than 6, if good mass transfer of chemicals and lignin dissolving is needed. As the ratio of Na2SO3 to NaOH dosage ranged from 0.4 to 2.4, low proportion of Na2SO3 allows effective delignification while no serious degradation of carbohydrate. Moreover, similar to kraft pulping, addition of AQ in the range of 0.05% to 0.25% is useful to remove lignin and protect the carbohydrate during AS/AQ pulping. Finally, although the transition point of kappa number may be changed while different raw material used for same pulping process or different pulping process for same raw materials, it is of interest and important for mill practice.


2013 ◽  
Vol 724-725 ◽  
pp. 399-404
Author(s):  
Jun Ying Zhang ◽  
Jing Hui Zhou ◽  
Hai Ming Li ◽  
Ying Han ◽  
Jun Feng Shi

Green liquor, a process liquor of alkali recovery in pulp and papermaking industry, pretreatment used in poplar kraft pulping process and the influences of pretreatment conditions on pentosan extraction have been studied. The results show that the influence of green liquor dosage on pentosan extraction is the most remarkable, with temperature taking the second place and time the third. Under the conditions of liquor ratio 1:4, green liquor dosage 1.5 L/kg (based on oven dried material), temperature 100 °C, time 90 min, higher pentosan extraction ratio of 13.81% (based on the pentosan content of raw material) is achieved. The wood was pulped under normal KP conditions after pretreated by the optimal pentosan extraction conditions. Comparing two kinds of pulp with and without pretreatment at similar stock yield level, the results show that the former has a little lower viscosity, significantly decreased Kappa number and excellent paper physical properties.


2020 ◽  
Vol 35 (3) ◽  
pp. 325-331
Author(s):  
Sandeep Kumar Tripathi ◽  
Izhar Alam ◽  
Nishi Kant Bhardwaj

AbstractEffect of different proportions of bark in mixed hardwood (about 70 % eucalyptus and 30 % poplar) chips on pulp and papermaking properties was studied. Increased proportion of bark in raw material chips resulted in increased active alkali consumption, increased reject content in pulp and reduced pulp yield after kraft pulping. The unbleached pulp obtained with higher proportion of bark in mixed hardwood chips also has higher kappa number, lower brightness and viscosity as compared to pulp obtained with bark free mixed hardwood chips. The soda loss and ash content in pulp were severely increased from 12.8 kg/t to 312 kg/t of pulp and 0.7 % to 21.1 %, respectively with the increase of bark portion from 0 to 100 % in raw material furnish. The physical strength properties like tensile, burst and tear indices in the pulp obtained from bark were reduced by 58.5 %, 60.7 % and 68.4 %, respectively as compared to that with bark free mixed hardwood.


Sign in / Sign up

Export Citation Format

Share Document