HEAVY METALS IN FOOD CROPS: IDEAL SOURCES AND ROLES OF URBAN AGRICULTURE IN FACILITATING THEIR CONSUMPTION- A REVIEW

2021 ◽  
Vol 5 (2) ◽  
pp. 34-45
Author(s):  
N. Abdullahi ◽  
E. C Igwe ◽  
M. A. Dandago ◽  
N. B. Umar

The qualities of agricultural soil and water are diminishing continuously due to the rigorous anthropogenic activities currently stocking the soil with a lot of toxic chemicals including heavy metals. Heavy metals are highly persistent and non-biodegradable, control of their contamination is very tricky to handle. Their presence in soil and water is detrimental to food crops and humans. Various sources of heavy metals contaminants and the role of urban food production on human heavy metal contamination were discussed.Heavy metals have their way into the soil and food crops through wastewater irrigation and production in contaminated soil. The habitual heavy metals contamination sources for food crops are wastewater irrigation, abuse of agrochemicals, production in the contaminated field, atmospheric deposit when foods are exposed to contaminated air, and unethical mining activities. Agricultural soil in urban and peri-urban areas are heavily contaminated with heavy metal due to various anthropogenic activities. Wastewater irrigation intensify the contamination by supplying the soil with more heavy metals. The heavy metals are passed to food during production and subsequently to humans after consumption.

2018 ◽  
Vol 6 (1) ◽  
pp. 83 ◽  
Author(s):  
Ram Proshad ◽  
Tapos Kormoker ◽  
Niaj Mursheed ◽  
Md. Monirul Islam ◽  
Md. Isfatuzzaman Bhuyan ◽  
...  

Heavy metal is a member of loosely defined subset of elements that exhibit metallic properties. It mainly includes the transition metals, some metalloids, lanthanides, and actinides. Heavy metals are ubiquitous in the environment, as a result of both natural and anthropogenic activities. They are stable and cannot be destroyed, and therefore tend to accumulate in the environment. In recent years, there has been a substantial concern over the extent of contamination of the environment with toxic elements. Soil pollution caused by rapid industrial activities has become a worrisome phenomenon due to its impact on soil and environment. Heavy metal pollution in soil arising from industrial discharges significantly poses a great threat to the environment. Heavy metals come to the soil by several ways and the soil becomes toxic which cause serious problem to the environment. In toxic soil, microorganisms cannot persist and there create an imbalance situation in the soil. The main objective of this study was to assess the problem of heavy metal contamination in industrial area soil in Bangladesh with environmental risk assessment.


2018 ◽  

<p>The objective of the study is to determine accumulation and translocation of heavy metals from soil to paddy straw irrigated with urban sewage wastewater in peri-urban region of Girudhumal subbasin area in Madurai. The soil samples were collected in seven locations irrigated with treated and untreated wastewater and analyzed for physical properties like pH, EC, bulk density, soil type, major (N,P,K) and micronutrients (Fe, Mn, Cu, Zn) and heavy metals Ni, Cd, Pb. SEM analysis showed that soil structure is significantly influenced by wastewater irrigation. It confirms that the wastewater irrigation disturbs soil structure and affecting the plant growth in long run.&nbsp; Pb content was higher than the prescribed safe limits in S5 and S6 location, similarly, Ni also was higher than the safe limit in all the locations. Pollution Load Index values are in the range of 0.08-0.56 for all sites, and it indicated that chance of heavy metal contamination is less. The EF values show moderate enrichment to Ni and Zn, Significant enrichment for Cd and Cu, Extremely high for Pb and deficiency for Mn. All these results confirmed that there is no immediate risk of heavy metal pollution, however with respect to Pb and Ni the plant tissues are showing higher values. The transfer factor for heavy metals from soil to paddy straw is less than 0.5 for Cd and for others is more than 0.5 indicated greater chances for heavy metal contamination.</p>


2021 ◽  
Vol 12 (4) ◽  
pp. 5486-5509

Quick industrial development, current farming practices, and other anthropogenic events enhance an important number of poisonous heavy metals in the atmosphere, which persuades severe poisonous effect on all the forms of living beings, which change the properties. This type of heavy metal pollution has ecological dangers as well as affects human health. Heavy metal contamination is mutagenic, endocrine, carcinogenic, and teratogenic, which causes nervous health problems mostly in kids. Further, an appropriate method for the remediation of adulteration of water along with soil is phytoremediation. In addition, it has been progressively utilized. Phytoremediation helps to improve the contaminated soil and water by the extraction of contaminating heavy metals, which is called phytoextraction and their phytostabilisation. Phytoremediation is based on many processes, and it is very eco-friendly, cost-effective, and economical. In this review, we aim to explain the detailed study of phytoremediation and current approaches.


2021 ◽  
Vol 945 (1) ◽  
pp. 012065
Author(s):  
Li Na Lee ◽  
Xinxin Guo ◽  
Jinq Shiou Lim ◽  
Rou Hui Wong ◽  
Choon Aun Ng ◽  
...  

Abstract Heavy metal contamination in soils had arisen into a more prominent problem as a result of increasing anthropogenic activities like manufacturing, mining, excessive application of agricultural chemicals and inappropriate disposal of wastes. Researchers across the globe had been striving to discover and develop methods to restore the soil back to its original condition with an assortment of remediation techniques that varies from treatment mechanism for various soil and contamination condition. Majority of the existing techniques have drawbacks like high energy consumption, specificity on the site condition, limitations on applicable contaminants, side effects after treatment, and also being uneconomical. More and more researchers are beginning to divert their attention into using organic stabilizers for treatment of soil heavy metal contamination in recent years after learning about its potential after numerous research showed promising reduction on the bioavailability and mobility of heavy metals. Due the lack of study on liquid-form organic stabilizers, the authors dedicated this research into implementing plant extract (TM) in the immobilization of heavy metals in soil. For comparison purpose, sodium alginate (SA), a proven organic stabilizer had been incorporated into the experiment to evaluate the performance of plant extract to immobilize cadmium (Cd), chromium (Cr), and manganese (Mn) from the metal-spiked soil samples in this research. The study findings suggested that the SA increased the unstable fractions, namely the exchangeable and carbonate fractions, of Cd relative to the untreated soil sample by 10.3 % to 5.2. On the other hand, the TM yields a result of 0.1 % to 1.1 % reduction of the unstable Cd. For the unstable Cr, both SA and TM decreased the concentration levels in the soil by 2.5 % to 8.0 % and 6.1 % to 7.9 % respectively. The results for Mn showed that the SA is able to decrease the concentration of its unstable fractions by 2.0 % to 7.5 % while the TM increases the concentration by 11.7 % to 1.5 %. In general, lower concentration of heavy metals in the unstable fractions was detected as the dosage of soil stabilizers applied increases. The application of soil stabilizers at 10 % weight percentage yields the lowest reading of unstable heavy metals in comparison with samples with lower dosage.


Author(s):  
Seyed Esmael Mahdavian ◽  
RK Somashekar

Urban food security in India is a matter of growing concern. It is estimated that by 2005, 60% of India's population will be living in urban areas. The presence of heavy metals in human body always draws scientific concern as these are considered responsible for affecting health, especially in these days where the release of toxic wastes in the environment has been increased. The increasing trends in food contamination in urban areas are largely attributed to the polluted environment in urban agriculture, contaminated food transport and supply chains; poor market sanitary conditions, and the use of contaminated or waste water for irrigation purposes. The objectives of this paper to measure the levels of heavy metal contamination of fruits in Bangalore markets and assess how the heavy metal contamination might have impacted food safety standards vis a vis heavy metals on urban consumers. The results show that urban consumers are at greater risk of purchasing fresh fruits with high levels of heavy metals beyond the legally permissible limits as defined by the Indian Prevention of Food Adulteration Act, 1954. It must be noted here that these norms are less strict than international food safety norms like Codex Alimentarius or European Union standards. It is therefore suggested here that care should be taken in the following: reduce pollution at water source points; improve post harvest handling; enhance better coordination in fresh crops trading system to improve food safety standards; improve sanitary conditions for the city food markets; and increase awareness in consumers and policy makers on the dangers of heavy metal contamination in the food intake. Keywords: Heavy metals; Prevention of Food Adulteration Act; Atomic Absorption Spectrophotometer (AAS) DOI: 10.3126/kuset.v4i1.2880 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 17-27


Author(s):  
Archana ◽  
Ajai Kumar Jaitly

Heavy metals especially lead, nickel, cadmium, copper, cobalt, chromium and mercury are more toxic and chief contaminants of the environment. Agricultural soils in many parts of the world are slightly to moderately polluted with heavy metals due to increase in geologic and anthropogenic activities (use of phosphate fertilizers, sewage sludge application, dust from smelters, industrial waste). Plants growing on these contaminated soils showed toxicity symptoms that results in reduce growth and activity which declined the productivity and posing threats to agro-ecosystems. They put plants under stress and affect their physiology. In this chapter, we have summarized the effects of heavy metals on plants including both symptoms and productivity.


2019 ◽  
Vol 2 (2) ◽  
pp. p73 ◽  
Author(s):  
Henry Olawale SAWYERR ◽  
Morufu Olalekan RAIMI ◽  
Adedotun Timothy ADEOLU ◽  
Oluwaseun Emmanuel ODIPE

Soil pollution with Heavy Metals (HMs) has been of much interests lately and is one of the major issues to be faced globally and requires attention because heavy metals above their normal ranges are extremely threatened to both biotic and abiotic life. It was therefore of interest to conduct study to assess the extent of heavy-metal contamination of soils within battery technicians’ workshops within Ilorin metropolis, Kwara State, Nigeria. A total of twenty-five composite soil samples were collected from six selected battery charger workshop within Ilorin metropolis and analyzed for the presence of heavy metals using atomic absorption spectrophotometer. Result reveals significant positive relationship between Mn and Fe (r=0.511**, p<0.001), Mn and Cu (r=0.565**, p<0.001), Fe and Cr (r=0.895**, p<0.001), Fe and Cu (r=0.823**, p<0.001) and between Cr and Cu (r=830**, p<0.001). Result also shows significant negative relationship between Mn and Cr (r=-0.679**, p<0.001), Pb and Cu (r=-0.468*, p<0.05) respectively. The pollution status of heavy metals in soils was evaluated using quantitative indices (pollution index–PI). The result shows that Zn was moderately contaminated while other heavy metals (Pb, Cd, Cr and Cu) had very slight contamination (pollution index<0.1). The Ilorin metropolis soils of Kwara State were found to have a moderate to very slight contamination respectively. Large variations in PI values of Zn revealed that soil in those areas of the city, which are influenced by anthropogenic activities, have moderate concentrations of Zn resulting in “considerable risk”. The findings of this study recommend comprehensive continuous annual monitoring and auditing and further studies on the level of these heavy metals in the near future to ascertain long-term effects of anthropogenic impact is forestalled to protect the men and the environment. This should also involve larger coverage with studies on ground water around such locations. Furthermore, continuous metals speciation should be carried out so that the form and extent of metal bioavailability can be evaluated further.


2018 ◽  
Vol 7 (1) ◽  
pp. 110-115
Author(s):  
Galina Yurievna Samoilenko ◽  
Evgeniy Aleksandrovich Bondarevich ◽  
Natalia Nikolaevna Kotsyurzhinskaya ◽  
Igor Anatolyevich Boriskin

The paper presents data on the content of gross and mobile forms of zinc, cadmium, lead and copper in the soils of Chita and its surroundings. The paper contains a comparative analysis of the accumulation (Kn) and movement (KP) coefficients of these microelements in organs ( Potentilla tanacetifolia Willd. ex Schlecht.), relative to their gross content and mobile forms in soils. The authors have revealed that soil samples of the studied sites contain unequal gross amount of heavy metals. In some points (6 and 3) the content of cadmium and zinc exceeded the Mac, that is why such soils have been attributed to heavily polluted. The index of biological activity on mobile forms of heavy metals in all sites significantly exceeded the same index on gross forms. It was found that Potentilla tanacetifolia are accumulators of heavy metal ions. Aboveground bodies accumulate and absorb cadmium and copper especially intensively, thus the content of mobile forms of these metals in the soil is insignificant. Excessive adsorption of trace elements in the phytomass of plants can be connected with surface contamination. According to the content of zinc and lead, the accumulation values in the organs of P. tanacetifolia were characterized by small coefficient values, against the background of their high concentration in the soil.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2245
Author(s):  
Manal A. Alnaimy ◽  
Sahar A. Shahin ◽  
Zuzana Vranayova ◽  
Martina Zelenakova ◽  
Enas Mohamed Wagdi Abdel-Hamed

There is consensus on the impact of wastewater irrigation on soil properties and heavy metal accumulation. The studies that show the impact of temporal changes as a result of different long-term additions of wastewater on the heavy metal accumulation and degradation of soil are extremely limited. This study was carried out to assess heavy metal contamination in soils irrigated with wastewater for more than 30 years in Egypt. A total number of 12 irrigation water samples and 12 soil profiles were collected during 2020 and were chemically characterized. The results showed that soils irrigated with wastewater over the long term contained significantly higher concentrations of heavy metals compared to fields irrigated with fresh water. Heavy metal levels in water and soil samples were within the permissible limits, with the exception of Cd concentration in water (0.03 mg L−1). Continuous cultivation for a long period of time (30 years) using raw urban wastewater application has led to the adverse effect of increasingly available Pb concentration (5.44 mg kg−1). Similar temporal behavior was seen for Cd and Fe, which increased by 0.98 and 11.2 mg kg−1, respectively, after 30 years. The heavy metals in wastewater-irrigated soils significantly increased in clayey soils, as compared to sandy soils irrigated from the same source. Our findings provide important information for decision makers in Egypt and similar countries for the development of a strategy for the use of wastewater in irrigation for sustainable agricultural management.


2012 ◽  
Vol 19 (4) ◽  
pp. 533-547
Author(s):  
Juris Burlakovs ◽  
Magnuss Vircavs

Abstract Environmental contamination with heavy metals as a result of anthropogenic activities is not a recent phenomenon. Contaminated sites with heavy metals can be found in functioning as well as abandoned industrial (brownfield) territories, landfills, residential areas with historical contamination, road sides and rarely in polluted sites by natural activities. Pollution data on its amount and concentrations is known from historical studies and monitoring nowadays, but it should be periodically updated for the use of territorial planning or in case of a change of the land use. A special attention should be paid to heavy metal contamination, because in many cases this contamination is most problematic for remediation. 242 territories now are numbered as contaminated and fixed in the National Register of contaminated territories - at least 56 of them are known as contaminated with heavy metals in different amount and concentration. Legislative aspects are discussed as well as an overview of soil and groundwater contamination research and the possible remediation technologies in Latvia are given. Two case studies are described in order to give the inside look in pre-investigations done before potential start of heavy metal remediation works.


Sign in / Sign up

Export Citation Format

Share Document