Risk Implications of Heavy Metal Contamination in Agricultural Soil and Crop Productivity

Author(s):  
Archana ◽  
Ajai Kumar Jaitly

Heavy metals especially lead, nickel, cadmium, copper, cobalt, chromium and mercury are more toxic and chief contaminants of the environment. Agricultural soils in many parts of the world are slightly to moderately polluted with heavy metals due to increase in geologic and anthropogenic activities (use of phosphate fertilizers, sewage sludge application, dust from smelters, industrial waste). Plants growing on these contaminated soils showed toxicity symptoms that results in reduce growth and activity which declined the productivity and posing threats to agro-ecosystems. They put plants under stress and affect their physiology. In this chapter, we have summarized the effects of heavy metals on plants including both symptoms and productivity.

2018 ◽  
Vol 6 (1) ◽  
pp. 83 ◽  
Author(s):  
Ram Proshad ◽  
Tapos Kormoker ◽  
Niaj Mursheed ◽  
Md. Monirul Islam ◽  
Md. Isfatuzzaman Bhuyan ◽  
...  

Heavy metal is a member of loosely defined subset of elements that exhibit metallic properties. It mainly includes the transition metals, some metalloids, lanthanides, and actinides. Heavy metals are ubiquitous in the environment, as a result of both natural and anthropogenic activities. They are stable and cannot be destroyed, and therefore tend to accumulate in the environment. In recent years, there has been a substantial concern over the extent of contamination of the environment with toxic elements. Soil pollution caused by rapid industrial activities has become a worrisome phenomenon due to its impact on soil and environment. Heavy metal pollution in soil arising from industrial discharges significantly poses a great threat to the environment. Heavy metals come to the soil by several ways and the soil becomes toxic which cause serious problem to the environment. In toxic soil, microorganisms cannot persist and there create an imbalance situation in the soil. The main objective of this study was to assess the problem of heavy metal contamination in industrial area soil in Bangladesh with environmental risk assessment.


2021 ◽  
Vol 23 (10) ◽  
pp. 267-271
Author(s):  
K. Chitra ◽  
◽  
G.B. Kamala ◽  

Agriculture is an important and significant sector in all the countries. Soil serves as a natural medium for the growth of the plants. Agricultural soil should be periodically tested for the improvement of crops. Soil physicochemical properties indicates the soil nutrient content and characteristics. The physicochemical parameters and heavy metal contamination in different agricultural soils of Coimbatore were analyzed. Soil samples were collected at the depth of 15 cm from five agricultural field. Soil samples were analyzed for physicochemical parameters and heavy metal contamination in the laboratory using standard protocols. Different agricultural soil samples were analyzed for parameters like pH, electrical conductivity (EC), TDS and salinity. Macronutrients nitrogen, phosphorus and potassium were estimated. Micronutrients like sodium and potassium also estimated for all the samples. Heavy metals like nickel, cadmium, lead, zinc, copper and manganese were estimated to check contamination status. The results stated that, all the soil samples were acidic in nature. Paddy cultivated soil was slightly alkaline in nature. All the soil samples were non-saline. Micro and macro nutrients were present in optimum level in all the soil samples. Heavy metals were present within their threshold limit and permissible limit. The study concluded that soil physicochemical parameters and heavy metal concentrations varied in five agricultural soils. Soils are good in their physicochemical parameters. This study indicates the quality of agricultural soil and it is useful to farmers regarding the nutritional and contamination status.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


Author(s):  
Usman Rilwan ◽  
Auta Abdullahi Abbas ◽  
Hudu Abdulrahman

Absorption of heavy metals through swampy agricultural soils may have serious consequences on human health. Present study determined the levels of Chromium (Cr), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Cadmium (Cd) and Lead (Pb) using X- Ray Spectrometry in 10 swampy agricultural soils. The result of this study revealed that, the heavy metals with their respective concentrations (Cr (278.1), Ni (462.1), Cu (314.1), Zn (502.8), As (13.5), Cd (524.5) and Pb (295.5)) were found in the soil samples in mg/kg. It also pointed out that the concentration of the heavy metals in the all soil samples for all locations in decreasing order was Cd > Zn >Ni > Cu >Pb > Cr >As. The concentration in swampy agricultural soils from Kokona was obviously higher than the safe limit set by the regulatory bodies which may be because of the geological activities in the studied area. Hence, heavy metals accumulation in swampy agricultural soils is a big concern in Kokona where people’s daily meal largely contains rice or rice based products which are mostly cultivated in swampy agricultural soils.


2021 ◽  
Vol 945 (1) ◽  
pp. 012065
Author(s):  
Li Na Lee ◽  
Xinxin Guo ◽  
Jinq Shiou Lim ◽  
Rou Hui Wong ◽  
Choon Aun Ng ◽  
...  

Abstract Heavy metal contamination in soils had arisen into a more prominent problem as a result of increasing anthropogenic activities like manufacturing, mining, excessive application of agricultural chemicals and inappropriate disposal of wastes. Researchers across the globe had been striving to discover and develop methods to restore the soil back to its original condition with an assortment of remediation techniques that varies from treatment mechanism for various soil and contamination condition. Majority of the existing techniques have drawbacks like high energy consumption, specificity on the site condition, limitations on applicable contaminants, side effects after treatment, and also being uneconomical. More and more researchers are beginning to divert their attention into using organic stabilizers for treatment of soil heavy metal contamination in recent years after learning about its potential after numerous research showed promising reduction on the bioavailability and mobility of heavy metals. Due the lack of study on liquid-form organic stabilizers, the authors dedicated this research into implementing plant extract (TM) in the immobilization of heavy metals in soil. For comparison purpose, sodium alginate (SA), a proven organic stabilizer had been incorporated into the experiment to evaluate the performance of plant extract to immobilize cadmium (Cd), chromium (Cr), and manganese (Mn) from the metal-spiked soil samples in this research. The study findings suggested that the SA increased the unstable fractions, namely the exchangeable and carbonate fractions, of Cd relative to the untreated soil sample by 10.3 % to 5.2. On the other hand, the TM yields a result of 0.1 % to 1.1 % reduction of the unstable Cd. For the unstable Cr, both SA and TM decreased the concentration levels in the soil by 2.5 % to 8.0 % and 6.1 % to 7.9 % respectively. The results for Mn showed that the SA is able to decrease the concentration of its unstable fractions by 2.0 % to 7.5 % while the TM increases the concentration by 11.7 % to 1.5 %. In general, lower concentration of heavy metals in the unstable fractions was detected as the dosage of soil stabilizers applied increases. The application of soil stabilizers at 10 % weight percentage yields the lowest reading of unstable heavy metals in comparison with samples with lower dosage.


2021 ◽  
Vol 5 (2) ◽  
pp. 34-45
Author(s):  
N. Abdullahi ◽  
E. C Igwe ◽  
M. A. Dandago ◽  
N. B. Umar

The qualities of agricultural soil and water are diminishing continuously due to the rigorous anthropogenic activities currently stocking the soil with a lot of toxic chemicals including heavy metals. Heavy metals are highly persistent and non-biodegradable, control of their contamination is very tricky to handle. Their presence in soil and water is detrimental to food crops and humans. Various sources of heavy metals contaminants and the role of urban food production on human heavy metal contamination were discussed.Heavy metals have their way into the soil and food crops through wastewater irrigation and production in contaminated soil. The habitual heavy metals contamination sources for food crops are wastewater irrigation, abuse of agrochemicals, production in the contaminated field, atmospheric deposit when foods are exposed to contaminated air, and unethical mining activities. Agricultural soil in urban and peri-urban areas are heavily contaminated with heavy metal due to various anthropogenic activities. Wastewater irrigation intensify the contamination by supplying the soil with more heavy metals. The heavy metals are passed to food during production and subsequently to humans after consumption.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sharhabil Musa Yahaya ◽  
Fatima Abubakar ◽  
Nafiu Abdu

AbstractThe incidence of heavy metal contamination in Zamfara State, northern Nigeria, due to artisanal mining in some villages has resulted in the pollution of a vast area of land and water. This study evaluated the extent of environmental risks caused by heavy metals. It involved five (5) villages (Bagega, Dareta, Sunke, Tunga, and Abare) where mining activities were taking place and Anka town with no record of mining activities served as control. In each of the five villages, three sites (3) were identified as a mining site, processing site, and village making a total of sixteen (16) sites. Bulked soil samples were collected in triplicate and analyzed for iron, lead, cadmium, chromium, zinc, and nickel using flame atomic absorption spectrophotometry. Measured concentrations of the heavy metals in soils were then used to calculate the pollution and ecological risk pose by heavy metals. Their concentrations were in the order Fe > Pb > Cr > Zn > Cd > Ni, with Pb and Cd having a concentration higher than permissible levels for soils and accounted for 98.64% of the total potential ecological risk. Also, all the different pollution indices examined showed that all the sites were polluted with Cd, and all the processing sites were polluted with Pb. This reveals that processing sites pose more risk to heavy metal contamination. Correlation analysis showed a highly significant (p < 0.001) positive correlation between Pb and Zn, Cr and Ni, and a significant (p < 0.01) positive correlation between Fe and Pb, Zn and Cr. The principal component analysis suggested that Pb, Zn, Cr, and Ni likely originated from the same source, i.e., mining activities, and Fe and Cd originated from the abundant parent material in the study area.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 699
Author(s):  
Tengku Said Raza’i ◽  
Thamrin Thamrin ◽  
Nofrizal Nofrizal ◽  
Viktor Amrifo ◽  
Hilfi Pardi ◽  
...  

Background: Heavy metals are materials naturally occurring in nature and increase with a rise in human activity. Ex-mining areas and domestic waste from human settlements are sources of heavy metal contamination that enter and pollute water, which then accumulates in various organisms including the Caulerpa racemosa community. The accumulation of heavy metals in C. racemosa has a wide impact on the food chain in aquatic ecosystems and humans because this alga is a consumptive commodity.   Methods: Sampling of C. racemosa was carried out at seven sites on Bintan Island, Indonesia covering the eastern (Teluk Bakau, Beralas Pasir, Malang Rapat), northern (Berakit and Pengudang), western (Sakera), and southern parts (Tg. Siambang). Sampling was carried out during different monsoons, and heavy metals in water and sediment samples were measured to determine the heavy metal concentration. Heavy metals were analyzed by a spectrophotometric method using Atomic Absorption Spectrophotometry.   Results: The results showed that heavy metal concentrations fluctuate according to changes in the wind season, which carry currents and spread pollutants into the water. The concentration of metal in the water is also from anthropogenic activities. The heavy metal content of cadmium (Cd), lead (Pb), copper (Cu), iron (Fe), and zinc (Zn) in C. racemosa is high in locations close to settlements. Meanwhile, in seawater samples, Fe and Zn metals have the highest concentrations compared to others.  Conclusions: Ex-bauxite mines are a source of Fe and Zn metal contamination in the environment, especially at Tg. Siambang. The levels of these heavy metals in the sediment are also high, as surface particle deposits accumulate at the bottom of the sediment. In general, the levels of heavy metals Cd, Pb, Cu, Fe, and Zn increase in the northern monsoon because the dynamics of the water transport greater heavy metal pollution.


2013 ◽  
Vol 1 (No. 4) ◽  
pp. 158-163 ◽  
Author(s):  
Akbar Khalid Farooq ◽  
Hale Wiliam HG ◽  
Athar Alistair D Headley and Mohammad

Environmental pollution of heavy metals from automobiles has attained much attention in the recent past. The present research was conducted to study heavy metal contamination in roadside soils of northern England. Roadside soil samples were collected from 35 sites in some counties of northern England and analysed for four heavy metals (cadmium, copper, lead, zinc). Their concentrations and distributions in different road verge zones (border, verge, slope, ditch) were determined. Lead concentration was the highest in the soil and ranged from 25.0 to 1198.0 &mu;g/g (mean, 232.7 &mu;g/g). Zinc concentration ranged from 56.7 to 480.0 &mu;g/g (mean, 174.6 &mu;g/g) and copper concentration ranged from 15.5 to 240.0 &mu;g/g (mean, 87.3 &mu;g/g). Cadmium concentration was the lowest in the soil and varied from 0.3 to 3.8 &mu;g/g (mean, 1.4 &mu;g/g). Though the levels of heavy metals in roadside soils were higher as compared to their natural background levels in British soils, their concentrations in general, however, were below the &lsquo;critical trigger concentrations&rsquo; for the contaminated soils. All the four heavy metals exhibited a significant decrease in the roadside soils with the increasing distance from the road. The border zone had the highest mean concentration of the four metals whereas the ditch zone exhibited the lowest mean concentration.


2013 ◽  
Vol 743-744 ◽  
pp. 732-744 ◽  
Author(s):  
Hui Su ◽  
Zhang Cai ◽  
Qi Xing Zhou

More and more attention has been paid to soil contamination by heavy metals in recent years. Heavy metal contamination includes heavy metal - heavy metal contamination, heavy metal - organic contamination, and heavy metal nutrient contamination. In particular, soil contamination by cadmium (Cd) is the most typical one. In terms of the current remediation technologies, phytoremediation of Cd contaminated soil remains popular due to its low cost, environmental aesthetics and in-situ effective treatment. Therefore, screening-out and identification of Cd hyperaccumulators becomes a hotspot in this researching domain. In order to further improve the efficiency of phytoremediation, we have developed a variety of joint remediation technologies. Based on these work at home and abroad, we summed up the studying progress in this field. Some main researching contents and directions of phytoremediation for Cd contaminated soils were also proposed.


Sign in / Sign up

Export Citation Format

Share Document