scholarly journals ON THE REPLACEMENT OF FOSSIL COAL IN LOCAL SOLID FUEL BOILERS

Author(s):  
V.Ya. Braverman

The paper substantiates the need to replace fossil coal in local solid fuel boilers by biocoal produced from various types of agricultural waste. Selection of the best available technology for biocoal production should be based on an integrated assessment including economic, environmental and social aspects. It is noted that direct combustion of agricultural waste does not meet environmental safety standards and also requires significant costs for modernization of existing boiler equipment. It is proposed to produce biocoal from agricultural waste using modern methods of thermochemical treatment — torrefaction and carbonization. End-products of biomass torrefaction — biocoal pellets or briquettes — have high calorific value, low sulfur and heavy metal contents, and low nitrogen oxide emissions. Hydrothermal carbonization is currently the most advanced biomass processing technology. It completely prevents pollution and has a number of significant advantages over other methods of biomass treatment. These advantages make it possible to consider hydrothermal carbonization to be the best available technology for the production of biochar, liquid biofuel and other products from non-food biomass. Bibl. 15, Fig. 2, Tab. 1.

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 444 ◽  
Author(s):  
Samuel Carrasco ◽  
Javier Silva ◽  
Ernesto Pino-Cortés ◽  
Jaime Gómez ◽  
Fidel Vallejo ◽  
...  

The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics.


2017 ◽  
Vol 75 (12) ◽  
pp. 2852-2863 ◽  
Author(s):  
Oluwasola O. D. Afolabi ◽  
M. Sohail

This paper compares conventional and microwave hydrothermal carbonization (HTC) of human biowaste (HBW) at 160 °C, 180 °C and 200 °C as a potential technology to recover valuable carbonaceous solid fuel char and organic-rich liquor. Also discussed are the influence of HTC heating methods and temperature on HBW processing conversion into solid fuel char, i.e. yield and post-HTC management, dewaterability rates, particle size distribution and the carbon and energy properties of solid fuel char. While HTC temperatures influenced all parameters investigated, especially yield and properties of end products recovered, heating source effects were noticeable on dewatering rates, char particle sizes and HBW processing/end product recovery rate and, by extension, energy consumed. The microwave process was found to be more efficient for dewatering processed HBW and for char recovery, consuming half the energy used by the conventional HTC method despite the similarity in yields, carbon and energy properties of the recovered char. However, both processes reliably overcame the heterogeneity of HBW, converting them into non-foul end products, which were easily dewatered at <3 seconds/g total solids (TS) (c.f. 50.3 seconds/g TS for a raw sample) to recover energy-densified chars of ≈17 MJ/kg calorific value and up to 1.4 g/l of ammonia concentration in recovered liquor.


2022 ◽  
Vol 157 ◽  
pp. 106329
Author(s):  
Dylan Mariuzza ◽  
Jui-Chun Lin ◽  
Maurizio Volpe ◽  
Luca Fiori ◽  
Selim Ceylan ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 210-224 ◽  
Author(s):  
Nienke Andriessen ◽  
Barbara J. Ward ◽  
Linda Strande

Abstract Resource recovery from faecal sludge can take many forms, including as a fuel, soil amendment, building material, protein, animal fodder, and water for irrigation. Resource recovery as a solid fuel has been found to have high market potential in Sub-Saharan Africa. Laboratory- and pilot-scale research on faecal sludge solid fuel production exists, but it is unclear which technology option is most suitable in which conditions. This review offers an overview and critical analysis of the current state of technologies that can produce a dried or carbonized solid fuel, including drying, pelletizing, hydrothermal carbonization, and slow-pyrolysis. Carbonization alters fuel properties, and in faecal sludge, it concentrates the ash content and decreases the calorific value. Overall, a non-carbonized faecal sludge fuel is recommended, unless a carbonized product is specifically required by the combustion technology or end user. Carbonized and non-carbonized fuels have distinct characteristics, and deciding whether to char or not to char is a key judgement in determining the optimal solid fuel technology option. Based on the existing evidence, this review provides a decision-making structure for selecting the optimal technology to produce a faecal sludge solid fuel and identifies the top research needs prior to full-scale implementation.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Nugroho Dewayanto ◽  
Mohd Haizal Mohd Husin ◽  
Mohd Ridzuan Nordin

Palm oil milling plant generates about 4 – 5 wt % of decanter cake from the total weight of fresh fruit bunch processed. The decanter cake was dried overnight in an oven at 105 °C to reduce moisture content before it could be used as solid fuel. Thermogravimetry analysis, pyrolysis and combustion of the dried decanter cake were performed to characterise it. The proximate analysis indicated that the dried decanter cake contained 5 wt% moisture, 65 wt% volatile, 11 wt% fixed carbon and 19 wt% ash. The calorific value of the solid fuel from decanter cake was determined using oxygen bomb calorimeter. Its’ higher heating value (HHV) was determined to be 17.96 MJ/kg, comparable to that of other biomass either from palm oil waste or other agricultural waste. The solid fuel from decanter cake is found to be a suitable replacement for other biomass and coke based solid fuels.


1994 ◽  
Vol 29 (8) ◽  
pp. 221-233
Author(s):  
Shimshon Belkin ◽  
Asher Brenner ◽  
Alon Lebel ◽  
Aharon Abeliovich

A case study is presented, in which two approaches to the treatment of complex chemical wastewater are experimentally compared: an end-of-pipe “best available technology” option and an in-plant source segregation program. Both options proved to be feasible. Application of the powdered activated carbon treatment (PACT™) process for the combined end-of-pipe stream yielded up to 93% reduction of dissolved organic carbon, with complete toxicity elimination. In order to examine the potential for applying a conventional activated sludge process, a simplified laboratory screening procedure was devised, aimed at establishing baseline data of removability potential, defined either by biodegradation, activated carbon adsorption or volatilization. Using this procedure, the major source of the non-biodegradable fraction in the combined park's wastewater was traced to a single factory, from which twelve individual source streams were screened. The results allowed the division of the tested sources into three groups: degradable, volatile, and problematic. A modified wastewater segregation and treatment program was accordingly proposed, which should allow an efficient and environmentally acceptable solution. This program is presently at its final testing stages, at the conclusion of which a full comparison between the two approaches will be carried out.


1995 ◽  
Vol 31 (12) ◽  
pp. 379-387 ◽  
Author(s):  
Henryk Melcer ◽  
Brian Evans ◽  
Stephen G. Nutt ◽  
Anthony Ho

To establish Best Available Technology Economically Achievable (BATEA) in non-urban communities which presently use conventional lagoon technology, an investigation was undertaken to evaluate alternatives which can be used to improve lagoon effluent and establish costs. Evaluated were the “Sutton” and the intermittent sand filtration or “New Hamburg” processes. The Sutton concept consists of a nitrifying extended-aeration plant followed by polishing lagoons, with waste sludge discharged into the lagoons. The New Hamburg concept consists of aerated or facultative lagoons, with the lagoon effluent sprayed intermittently over sand filters. The Sutton plants produce an improved effluent quality relative to conventional facultative lagoons in terms of BOD5 and TSS concentrations. Increases in ammonia concentration across the polishing pond occur after 5-7 years of plant operation, suggesting a need to implement a regular program of sludge removal from the lagoon. The New Hamburg process results in a significant improvement in effluent quality in terms of BOD5, TSS, TP, TKN, NH3-N and H2S concentrations. Approximate capital costs for upgrading the existing conventional lagoons in Ontario to Sutton and New Hamburg process facilities are estimated at US $221 million and US $93 million, respectively.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 201-206
Author(s):  
I. Reilama ◽  
N. Ilomäki

Oy Metsä-Botnia Ab's Kaskinen mill produces ECF and TCF bleached softwood and hardwood pulp on a single continuous production line. Production capacity has been raised from 250,000 tonnes to 420,000 tonnes a year after the commission in 1977. The basic process solutions date mainly from the 1970s. However, process technology has been gradually modernised. With systematic and well-timed process development investments the mill has remained competitive and among frontrunners in terms of environmental protection. Today, Kaskinen represent the best available technology (BAT) applicable to old mills. Effluent loading in general and nutrient emissions in particular has diminished during the development projects of the mill. Comparison to other mills shows that as far as effluent emissions are concerned, Kaskinen is one of the best pulp mills in Finland and Scandinavia. In this presentation, Kaskinen is also compared to Metsä-Rauma, the first greenfield TCF mill in the world, which was started up in 1996. Kaskinen's pioneering work on TCF technology was used as a basis for process solutions in the Rauma greenfield project.


Sign in / Sign up

Export Citation Format

Share Document