scholarly journals Pemanfaatan Hasil Pembakaran Limbah Cangkang Kelapa Sawit sebagai Bahan Pengganti Pasir pada Pembuatan Beton Normal

2017 ◽  
Vol 6 (1) ◽  
pp. 30-40
Author(s):  
Fauzi Rahman ◽  
Fathurrahman Fathurrahman

In 2015 the total area of oil palm plantations in Kalimantan reached 3.47 million Ha with a production of 8.12 million tons per year. Solid waste is in the form of fresh fruit bunches and palm shells. The result of combustion of oil palm shell waste in the form of boiler crust ash is a waste that has chemical elements SiO2, Al2O3, and CaO, with the content of these compounds can affect the strength of the concrete and can increase its strength. In this study, the quality of the concrete mix planned at 28 days is 23 MPa. Concrete testing included compressive strength tests carried out at 3 days, 7 days, 14 days, 28 days, 42 days and 56 days. Before making concrete samples, the mortar compressive strength is tested first by varying the boiler crust ash content by 0%, 15%, 25%, 35%, and 50% to obtain the optimum mixture. Based on the results of the analysis of compressive strength mortar obtained the optimum mixture of 15% for the manufacture of concrete that will be compared with normal concrete. The compressive strength of concrete with the optimum mixture at 28 days is 24.44 Mpa more than the compressive strength of the 23 Mpa plan. Concrete that has the highest compressive strength occurs at the age of 56 days is concrete with the normal mixture with a compressive strength of 34.44 Mpa higher than the compressive strength of concrete with an optimum mixture of 15% boiler crust ash which is 28.51 MPa.

Author(s):  
Sudirman Kimi ◽  
Abdullah Abuzar Alghafari

In the development of concrete technology (Concrete Technology) today which is increasingly unceasingly, along with the development of the era hence the quality of concrete selection as the main raw material of building construction is very important. This research writer take silica fume and glenium sky as added concrete mixture to know the influence of the addition of silica fume and glenium sky to the compressive strength of concrete. The research is divided into three stages : material testing, test object making and test object. This research uses cube-shaped specimen with size 15x15x15 cm, with 5 variations, they are normal concrete, silica fume 5%, silica fume 5% + glenium sky 2%, silica fume 5% + glenium sky 4%, and silica fume 5% + glenium sky 6%, which every variations has 3 test specimens with 3 days, 7 days, and 28 days. From laboratorium testing, the characteristics of compressive strength of concrete at age 28 days of normal concrete is 407,2 Kg/Cm2, normal concrete with silica fume 5% is 418,5 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 2% is 435,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 4% is 451,9 Kg/Cm2, normal concrete with silica fume 5% + glenium sky 6% is 484,1 Kg/Cm2.


CI-TECH ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 45-48
Author(s):  
Triaswati ◽  
Srie Subekti ◽  
Sulchan Arifin ◽  
Febri Aditya

Stone dust nowadays is a side product of the stone crushing industry, the quality of which is quite a lot that it becomes a waste that needs to be handled. This study is intended to find out the composition of stone dust by adding some additive substance type D and type F to reach a compressive strength of 350 kg/cm2. The variation of percentage of stone dust on the composition of concrete mixture is 0%, 20%, 40%, 60%, 80%, 100%. The design of concrete mixture composition refers to the procedure of making preparation of the normal concrete mixture. SNI 03-2384-1993. The size of the cylinder test object is 15 cm in diameter and 30 cm in height. The result of this research shows that the mixture using stone dust has quite an effect on the compressive strength of concrete. From the result of the experiment, it is shown that for compressive strength of 350 kg/cm2, we can use 100% of stone dust with a resulted compressive strength of 445 kg/cm2.


2020 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
Moh. Abdul Basit Minanulloh ◽  
Yosef Cahyo ◽  
Ahmad Ridwan

K-300 concrete is concrete that has a characteristic compressive strength of 300 kg/cm2.  Many studies that use plantation and mining waste materials are simply wasted. These wastes are in the form of kemiri shell ash, rice husk ash, and others. in this study, kemiri shell ash as a cement additive, with variations in the addition of 5%, 10%, and 15% of the weight of cement to the quality of K-300 concrete. Concrete compressive tests carried out at the age of 7 and 28 days. The purpose of this study was to determine the compressive strength of concrete, the highest pressure strength, and the optimum percentage. Strong concrete pressure characteristics obtained at 28 days at a normal concrete variation 304.127 kg / cm, normal concrete variations with the addition of 5% “Abu Cangkang kemiri” 421,551 kg / cm, normal concrete variations with the addition of 10% “Abu Cangkang kemiri” 426,863 kg / cm2, and variations  normal concrete with the addition of 15% “Abu Cangkang kemiri” 428,210 kg / cm.  The results show that the optimum percentage of the addition of kemiri shell ash is 15% of the weight of cement with a maximum compressive strength of 428,210 kg/cm.  Beton K-300 adalah beton yang mempunyai kuat tekan karakteristik sebesar 300 kg/cm². Banyak penelitian yang menggunakan bahan – bahan limbah perkebunan dan tambang yang terbuang begitu saja. Limbah tersebut berupa abu cangkang kemiri, abu sekam Padi, dan lain- lain. Pada penelitian ini menggunakan abu cangkang Kemiri sebagai bahan tambah semen, dengan variasi penambahan 5%, 10%, dan 15%  dari berat semen terhadap mutu beton K-300. Uji tekan beton dilaksanakan pada umur 7 dan 28 hari. Tujuan penelitian ini adalah untuk mengetahui kuat tekan beton dan  kuat tekan tertinggi. Kuat tekan karakteristik yang diperoleh pada umur 28 hari pada variasi beton normal 304,127 kg/cm², variasi beton normal dengan penambahan 5% abu cangkang  Kemiri 421,551 kg/cm², variasi beton normal dengan penambahan10% abu cangkang Kemiri 426,863kg/cm², dan variasi beton normal dengan penambahan 15% abu cangkang Kemiri 428,210 kg/cm². Hasil penelitian menunjukkan bahwa presentase optimum dari penambahan abu cangang Kemiri  adalah sebesar15% dari berat semen dengan kuat tekan maksimum sebesar 428,210 kg/cm².


2019 ◽  
Vol 2 (1) ◽  
pp. 13-24
Author(s):  
Muhammad Zardi ◽  
Cut Rahmawati ◽  
T Khamarud Azman

Building structure often use concrete as the main structural material, in which the concrete-forming materials such as cement, sand, gravel, water and additives. The aim of study is to investigate the influence of addition of Sika Viscocrete-10 toward concrete compressive strength. Concrete is planned with Water Cement Ratio 0.3. Slump values obtained for normal concrete with maximum aggregate diameter of 25.4 mm is 7.8 cm. The values are in accordance with the slump plan of 7.5 to 10 cm, meanwhile values slump that use Sika Viscocrete-10 as much as 0.5% is 19.5 cm; Sika Viscocrete-10 as much as 1% is 21.9 cm; Sika Viscocrete-10 as much as 1.5% is 23 cm; and Sika Viscocrete-10 as much as 1.8% is 24.7 cm. Based on these test results, the conclusion is addition of Sika Viscocrete-10 is able to enhance the workability value of concrete, so it is easy to work. Concrete mix design using the American Concrete Institute (ACI). Specimens used in this study is a standard concrete cylinder diameter of 150 mm and a height of 300 m, tested after the age of 14 days. Number of test specimens for all treatments is 25 with 5 specimens in each treatment. The average compressive strength of concrete with normal mixture is 295.43 kg/cm2; for concrete with Sika Viscocrete-10 as mush as 0.5% is of 376.50 kg/cm2; Sika Viscocrete-10 as mush as 1% is 452.94 kg/cm2; Sika Viscocrete-10 as mush as 1.5% is 501.63 kg/cm;2 and Sika Viscocrete-10 as mush as 1.8% is 515.78 kg/cm2. Concrete compressive strength greater with increasing percentage of Sika Viscocrete-10.


2018 ◽  
Vol 7 (1) ◽  
pp. 19-26
Author(s):  
Rida Respati

In this research, we want to experiment to find out the compressive strength of medium quality concrete K-350 with ingredients added MASTER RHEOBUILD 6, whose function is to accelerate hardening, improve the quality of concrete, reduce water use and increase the value of slump. However, it should be noted that errors in dosages and how to use added ingredients can be detrimental to the quality of concrete. The results of the study show that the addition of 0.25, 0.5 and 0.75 liters per 50 kg of cement can increase the concrete compressive strength. The compressive strength of concrete with the addition of 0.25 liters/50 kg of cement has increased 362.67 kg/cm� from the normal concrete compressive strength of 350.58 kg/cm2. The addition of 0.5 liters/50 kg of cement has increased again to 373.24 kg/cm�, and the addition of 0.75 liters/50 kg of cement has increased the concrete compressive strength to 379.29 kg/cm� of normal concrete. Comparison of compressive strength before and after addition of admixture with an increase of 3.45% in addition of 0.25 liters/50 kg of cement, 6.47% in addition of 0.5 liters/50 kg of cement and 8.19% in addition of 0.75 liters/50 kg of cement.


2021 ◽  
Vol 21 (3) ◽  
pp. 129-138
Author(s):  

Normal concrete uses fine aggregate and coarse aggregate with concrete density 2200 kg/m3-2400 kg/m3 with a compressive strength of about 15-40 MPa [1]. The purpose of this study is to determine characteristics of the concrete aggregate and the compressive strength of the concrete design based on the DOE (Department of Environment) method and the SNI Standard. In this research, the use of nugmet shell was varied as follows: 0%, 0,25%, 0,50%, 0,75% and 1% of the cement weight. The results showed that the use of nutmeg shells as a normal concrete affected the specific gravity and the value compressive strength of concrete. The higher the percentage of nutmeg shells, the lower the specific gravity and compressive strength of the concrete. The average value of density to nutmeg shell concrete (NSC) 2254.72 (kg/m3) and normal concrete 2304.32 (kg/m3). The compressive strength of normal concrete is 224.2 kg/cm2 and the nutmeg shell concrete (NSC) the composition of 0.25% and 0.5% obtained by 129.6 kg/cm2 and 140.0 kg/cm2 increases the use of nutmeg shell 0.75% and 1% obtained value ​​of 117.6 kg/cm2 and 118.1 kg/cm2 decreased at the age of 28 days. The compressive strength of normal concrete 22 MPa while the maximum nutmeg shell concrete (NSC) 14 MPa, so it does not meet the quality of normal concrete in general.


2021 ◽  
Vol 3 (3) ◽  
pp. 243-252
Author(s):  
Masril Masril ◽  
Jefry Rizaldo

Plastic Material Plastic waste is a problem that is very often encountered in urban and rural areas. The use of plastic in each year will continue to increase because food and beverage products all use materials made of plastic. However, the plastic in question is plastic that is difficult to contaminate with soil or commonly referred to as inorganic waste, which is difficult to self-destruct. This is what causes the amount of plastic waste to increase.Therefore, to reduce this waste, the volume of this waste is used in the development. Besides, the grain gradation of the aggregate has been determined with the aim of obtaining an increase in the compressive strength of the concrete with the addition of plastic waste. The quality of the concrete to be examined by the authors in this study is fc = 14.5 MPa. In other words, in this study the author tries to compare the compressive strength of concrete between normal concrete and concrete mixed with plastic waste. In this study also used a variation of plastic waste substitution with a ratio of 0%, 5%, 10% to the volume of fine aggregate. For each variation, 2 samples were used which included normal concrete so that the total test object used was 12 tested at 7 days, 14 days and 28 days of concrete.From the results of testing the compressive strength of concrete against normal concrete and mixed concrete with sawdust surian at the age of 28 days, the normal concrete compressive strength is 14.5 MPa, while in the sawdust mixture with a percentage of 5%, the concrete compressive strength is 14.14 MPa. 10% obtained a compressive strength of 17.05 MPa. From this test, it can be concluded that from each of the percentages that are made, the compressive strength increases along with the percentage of the amount of plastic waste added to the concrete mixture. In other words, the greater the percentage of plastic waste used, the higher the compressive strength and quality of the concrete produced.


2021 ◽  
Vol 20 (2) ◽  
pp. 005-014
Author(s):  
Dorota Michałowska-Maziejuk ◽  
Barbara Goszczyńska

This paper analyses the results of concrete compressive strength tests on cubic samples with different w/c ratios during the early stage of hardening (at 7, 14, and 28 days). Statistical and strength parameters were assessed and the quality of the concrete was estimated. The expected concrete grade, C25/30, was confirmed against the formulation provided by the prefabrication plant. Then, the amount of individual constituents was adjusted to obtain the target grade of concrete, i.e., C20/25. The concrete grade was estimated based on concrete strength parameters measured at three time points and compared with the expected 28-day strength values determined as per Eurocode 2 and with the concrete grade defined by these values. The paper also provides an overview of the most widely used methods of testing concrete compressive strength.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2020 ◽  
Vol 5 (2) ◽  
pp. 77
Author(s):  
Anissa Diyah Lestari ◽  
Luky Indra Gunawan ◽  
Dyah Julia Syifa ◽  
Ronny Wahyu Wibowo ◽  
Hendramawat Aski Safarizki

AbstrakPada era teknologi sekarang ini, beton adalah sebagai salah satu bahan bangunan yang paling banyak digunakan di Indonesia. Inovasi diperlukan untuk peningkatan mutu beton dalam kuat tekan beton dan harga lebih murah dibandingkan dengan beton normal. Limbah penambangan batu kapur di Wonogiri tidak dimanfaatkan dengan baik. Sehingga menimbulkan polusi udara dan mencemari lingkungan di sekitar penambangan. Maka dari itu, inovasi ini menggunakan limbah kalsit untuk ditambahkan sebagai bahan tambah pembuatan beton. Luaran yang diharapkan dalam penelitian ini adalah dapat mengetahui komposisi yang pas untuk penambahan kalsit dalam campuran pembuatan beton dan menjadikan beton dengan bahan tambah limbah kalsit sebagai beton inovatif ramah lingkungan dan memiliki nilai ekonomis. Serta draft artikel ilmiah tentang beton inovatif yang dituangkan dalam sebuah draft artikel ilmiah, laporan kemajuan dan laporan akhir. Hasil yang telah dicapai saat ini berdasarkan indikator keberhasilan jangka pendek, yaitu telah dilaksanakannya penelitian dan pembuatan beton dengan bahan tambah kalsit dengan beberapa varian, serta pengujian sampel beton setelah berumur 14 hari. Pada penelitian ini mengetahui komposisi optimum penambahan kalsit terhadap kuat tekan beton, dengan penambahan kadar kalsit sebesar 5%, 9%, dan 15% benda uji yang digunakan adalah silinder berdiameter 15 cm dengan tinggi 30 cm sebanyak 9 buah dimana pengujian dilakukan pada umur 14 hari. Hasil analisis data pengujian kuat tekan beton kalsit adanya peningkatan pada variasi 9% kalsit sebesar 20,71 MPa (4.12%) dibandingkan beton normal 19,89 MPa. Maka kesimpulannya penggunaan kalsit dapat meningkatkan kuat tekan beton.Kata Kunci: Efektivitas, Beton SCC, Kalsit, Kuat TekanAbstractConcrete is one of the most widely used building materials in Indonesia In the current technological era. Innovation is needed to improve concrete quality in concrete compressive strength and prices are cheaper than normal concrete. Waste from limestone mining in Wonogiri is not utilized properly. So that it causes air pollution and pollutes the environment around mining. Therefore, this innovation uses calcite waste to be added as an ingredient to add concrete. The expected output in this study is to be able to find out the right composition for the addition of calcite in a mixture of concrete making and to make concrete with calcite added waste as an innovative concrete that is environmentally friendly and has economic value. As well as the draft scientific article about innovative concrete as outlined in a draft scientific article, progress report and final report. The results that have been achieved at present are based on short-term success indicators, namely the research and manufacture of concrete with calcite added ingredients with several variants, as well as testing of concrete samples after being 14 days old. In this study, the optimum composition of calcite was added to the compressive strength of concrete, with the addition of calcite levels of 5%, 9%, and 15%. The test material used was a cylindrical diameter of 15 cm with a height of 9 cm in which testing was done at 14 days . The results of the analysis of the test data for compressive strength of calcite concrete was an increase in the variation of 9% of calcite by 20.71 MPa (4.12%) coMPared to normal concrete of 19.89 MPa. So the conclusion is the use of calcite can increase the concrete compressive strength.Keywords: Effectiveness, SCC Concrete, Calcite, Compressive Strength


Sign in / Sign up

Export Citation Format

Share Document