scholarly journals Anion Effect on the Electropolymerization Reaction of Metanil Yellow in Aqueous Media and Characterization of Polymer Films

Author(s):  
László Kiss ◽  
András Kiss ◽  
Sándor Kunsági-Máté

The electropolymerization of Metanil Yellow was investigated in aqueous solutions containing inorganic acids (sulphuric, hydrochloric, nitric, phosphoric and perchloric acid) as well as sulphonic acids (5-sulpho salicylic acid, sulphanilic acid, dodecylbenzene sulphonic acid, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and lauryl sulphate in its acidic solution. By the inorganic ions the conductivity increased in the sulphate, chloride, nitrate, perchlorate serie. Of the organic sulphonic compounds 5-sulpho-salicylic acid was found to be a very efficient dopant in increasing polymer conductivity being obviously better than the other sulphonate anions. The formed conducting polymer was not suitable for detection of the corresponding anion. Nitrite ions completely diminished the electric properties of the polymer due to the reaction resulting nitrosamine.

Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


2020 ◽  
Vol 17 (6) ◽  
pp. 488-495
Author(s):  
Hussein Ali Al-Bahrani ◽  
Mohanad Mousa Kareem ◽  
Abdul Amir Kadhum ◽  
Nour A. Alrazzak

Background: The phthalocyanines a series of compounds involves four iso-indole units linked by aza nitrogen atoms bonded with metal atoms that are normally located in the center a phthalocyanines ring. Some of the central metal-phthalocyanines can be excited by ultraviolet light and emit a fluorescence in far-red region. Objective: To synthesize a derivative of phthalocyanines namely 4,4',4' '-tri-(dodecenyl succinic anhydride)- 4' ' '-(5-amino salicylic acid) zinc phthalocyanine with a zinc central metal. Materials and Methods: The reaction of 4- nitro Phthalonitrile and 4- amino Phthalonitrile with ZnCl2 in the presence of dimethyl amino ethanol afforded 4,4',4' '-triamino-4' ' '-nitro zinc phthalocyanine. This product reacted with 5-amino salicylic acid to yield tetra-(5-amino salicylic acid) zinc phthalocyanine. A dodecenyl succinic anhydride was added on the amine group of benzoic rings to afford 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine(I), the target compound. Results and Discussion: Compound I is successfully synthesized with a yield of 72% from tetra-(5-amino salicylic acid) zinc phthalocyanine with dodecenyl succinic anhydride. Conclusion: The newly synthesized molecule of 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine (I), tetra-(5-amino salicylic acid) zinc phthalocyanine(E) and 4,4',4' '- triamino-4' ' '-nitro zinc phthalocyanine (S). The reaction of 4- nitro Phthalonitrile and 4- amino and the structure of compound I is confirmed and its formation was proven.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1048
Author(s):  
Belén Díaz ◽  
X. Ramón Nóvoa ◽  
Carmen Pérez ◽  
Sheila Silva-Fernández

This research emphasizes the importance of the acid cleaning prior to the phosphate development on high-strength steel rods. It compares the phosphate properties achieved after different acid-pickling conditions. The most common inorganic acids were considered in this study. Additionally, taking into account the environmental and safety concerns of these acids, the assessment of a less harmful organic acid is presented. This study revealed significant differences in the coating morphology and chemical composition whereas no great changes were found in terms of the coating weight or porosity. Thus, hydrochloric and sulfuric acid promote the growth of a Fe-enriched phosphate layer with a less conductive character that is not developed after the pickling with phosphoric acid. The phosphate developed after the citric acid pickling is comparable to that developed after the inorganic acids although with a porosity slightly higher. The temperature of the citric acid bath is an important parameter that affects to the phosphate appearance, composition, and porosity.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


Sign in / Sign up

Export Citation Format

Share Document