scholarly journals An Application of Fuzzy Sets to the Blastability Index (BI) Used in Rock Engineering

Author(s):  
Aref Alipour ◽  
Mojtaba Mokharian ◽  
Sajjad Chehreghani

Rock masses have inherently different resistance to fragmentation by blasting. This property is hereafter referred to as the blastability of a rock mass. Empirical models for the estimation of blastability have been developed. In this study, the Mamdani fuzzy algorithm was used to express the blastability index by fuzzy sets. We use Lilly and Ghose blastability models which are important models of blastability. Parameters of these models were represented by fuzzy sets as the input variables of the fuzzy model. The output of the fuzzy model is a final blastability index rating. Experimental data is obtained from seven mine and one dam sites in Iran. BI values are obtained from both BI fuzzy inference system and conventional BI; Fuzzy sets have more adjustment than conventional model.

2011 ◽  
Vol 14 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Vesna Ranković ◽  
Jasna Radulović ◽  
Ivana Radojević ◽  
Aleksandar Ostojić ◽  
Ljiljana Čomić

Predicting water quality is the key factor in the water quality management of reservoirs. Since a large number of factors affect the water quality, traditional data processing methods are no longer good enough for solving the problem. The dissolved oxygen (DO) level is a measure of the health of the aquatic system and its prediction is very important. DO dynamics are highly nonlinear and artificial intelligence techniques are capable of modelling this complex system. The objective of this study was to develop an adaptive network-based fuzzy inference system (ANFIS) to predict the DO in the Gruža Reservoir, Serbia. The fuzzy model was developed using experimental data which were collected during a 3-year period. The input variables analysed in this paper are: water pH, water temperature, total phosphate, nitrites, ammonia, iron, manganese and electrical conductivity. The selection of an appropriate set of input variables is based on the building of ANFIS models for each possible combination of input variables. Results of fuzzy models are compared with measured data on the basis of correlation coefficient, mean absolute error and mean square error. Comparing the predicted values by ANFIS with the experimental data indicates that fuzzy models provide accurate results.


2019 ◽  
pp. 66-71
Author(s):  
M. N. Belousova ◽  
A. A. Dashkov

The features of the proposed fuzzy model for assessing the crisis state of enterprises have been disclosed. The MATLAB software environment has been selected as the environment for building a fuzzy output system. In the model of a fuzzy assessment of the crisis state of enterprises, the following input linguistic variables have been highlighted: the relative level of financial status, the probability of bankruptcy, the level of information security, the level of innovation potential. The terms of the input variables and the result variable have been described. The rule base for fuzzy inference system has been formulated. The results of modeling the assessment of the crisis state of enterprises have been represented by a fuzzy inference procedure.


2020 ◽  
Vol 10 (10) ◽  
pp. 3464
Author(s):  
Nikita Jindal ◽  
Jimmy Singla ◽  
Balwinder Kaur ◽  
Harsh Sadawarti ◽  
Deepak Prashar ◽  
...  

Renal cancer is a serious and common type of cancer affecting old ages. The growth of such type of cancer can be stopped by detecting it before it reaches advanced or end-stage. Hence, renal cancer must be identified and diagnosed in the initial stages. In this research paper, an intelligent medical diagnostic system to diagnose renal cancer is developed by using fuzzy and neuro-fuzzy techniques. Essentially, for a fuzzy inference system, two layers are used. The first layer gives the output about whether the patient is having renal cancer or not. Similarly, the second layer detects the current stage of suffering patients. While in the development of a medical diagnostic system by using a neuro-fuzzy technique, the Gaussian membership functions are used for all the input variables considered for the diagnosis. In this paper, the comparison between the performance of developed systems has been done by taking some suitable parameters. The results obtained from this comparison study show that the intelligent medical system developed by using a neuro-fuzzy model gives the more precise and accurate results than existing systems.


2021 ◽  
Vol 9 (1) ◽  
pp. 49
Author(s):  
Tanja Brcko ◽  
Andrej Androjna ◽  
Jure Srše ◽  
Renata Boć

The application of fuzzy logic is an effective approach to a variety of circumstances, including solutions to maritime anti-collision problems. The article presents an upgrade of the radar navigation system, in particular, its collision avoidance planning tool, using a decision model that combines dynamic parameters into one decision—the collision avoidance course. In this paper, a multi-parametric decision model based on fuzzy logic is proposed. The model calculates course alteration in a collision avoidance situation. First, the model collects input data of the target vessel and assesses the collision risk. Using time delay, four parameters are calculated for further processing as input variables for a fuzzy inference system. Then, the fuzzy logic method is used to calculate the course alteration, which considers the vessel’s safety domain and International Regulations for Preventing Collisions at Sea (COLREGs). The special feature of the decision model is its tuning with the results of the database of correct solutions obtained with the manual radar plotting method. The validation was carried out with six selected cases simulating encounters with the target vessel in the open sea from different angles and at any visibility. The results of the case studies have shown that the decision model computes well in situations where the own vessel is in a give-way position. In addition, the model provides good results in situations when the target vessel violates COLREG rules. The collision avoidance planning tool can be automated and serve as a basis for further implementation of a model that considers the manoeuvrability of the vessels, weather conditions, and multi-vessel encounter situations.


2020 ◽  
pp. 1-11
Author(s):  
Gökçen A. Çiftçioğlu ◽  
Mehmet A. N. Kadırgan ◽  
Ahmet Eşiyok

Safety culture is a very complex phenomenon due to its intangible nature. It is tough to measure and express it with numerical values, as there is no simple indicator to measure it. This paper presents a fuzzy inference system that measures the safety culture. First of all, a safety culture assessment questionnaire is developed by utilizing related literature. The initial questionnaire had 29 items. The questionnaire is applied to 259 employees within the gun manufacturing factory. After making an exploratory factor analysis, the questionnaire is based on five factors with 25 items. The safety culture indicators are defined as; safety follow-up audit reporting, employees’ self-awareness, operational safety commitment, management’s safety commitment, safety orientedness. Normality, reliability, and correlation analysis are performed. Then a fuzzy model is constructed with five inputs and one output. The inputs are the five factors mentioned above, and the output generated is the safety culture result, which is between 0-1. The presented fuzzy model produces reliable results indicating the safety culture level from the employees’ eyes. Beyond exploring the employees’ safety culture, the proposed model can easily be understood by the practitioners from various sectors. Furthermore, the model is straightforward to customize for various fields of industry.


2011 ◽  
Vol 268-270 ◽  
pp. 336-339
Author(s):  
Guo Lin Jing ◽  
Wen Ting Du ◽  
Quan Zhou ◽  
Song Tao Li

Fuzzy system is known to predict model in the electrodialysis process. This paper aimed to study fitting effect by ANFIS in a laboratory scale ED cell. Separation percent of NaCl solution is mainly as a function of concentration, temperature, flow rate and voltage. Besides, ANFIS(Adaptive Neuro-Fuzzy Inference System) based on Sugeno fuzzy model, its structure was similar to neural network and could generate fuzzy rules automatically, using the error back propagation algorithm and least square method to adjust the parameters of fuzzy inference system. We obtained fitted values of separation percent by ANFIS. Separation percent from experiments compared with the fitted values of separation percent. The result is shown that the correlation coefficient is 0.988. Therefore, it is verified as a good performance in the electrodialysis process.


2020 ◽  
Author(s):  
Adel Bakhshipour ◽  
Hemad Zareiforoush

Abstract A combination of decision tree (DT) and fuzzy logic techniques was used to develop a fuzzy model for differentiating peanut plant from weeds. Color features and wavelet-based texture features were extracted from images of peanut plant and its three common weeds. Two feature selection techniques namely Principal Component Analysis (PCA) and Correlation-based Feature Selection (CFS) were applied on input dataset and three Decision Trees (DTs) including J48, Random Tree (RT), and Reduced Error Pruning (REP) were used to distinguish between different plants. In all cases, the best overall classification accuracies were achieved when CFS-selected features were used as input data. The obtained accuracies of J48-CFS, REP-CFS, and RT-CFS trees for classification of the four plant categories namely peanut plant, Velvetleaf, False daisy, and Nicandra, were 80.83%, 80.00% and 79.17% respectively. Along with these almost low accuracies, the structures of the decision trees were complex making them unsuitable for developing a fuzzy inference system. The classifiers were also used for differentiating peanut plant from the group of weeds. The overall accuracies on training and testing datasets were respectively 95.56% and 93.75% for J48-CFS; 92.78% and 91.67% for REP-CFS; and 93.33% and 92.59% for RT-CFS DTs. The results showed that the J48-CFS and REP-CFS were the most appropriate models to set the membership functions and rules of the fuzzy classifier system. Based on the results, it can be concluded that the developed DT-based fuzzy logic model can be used effectively to discriminate weeds from peanut plant in the form of machine vision-based cultivating systems.


2012 ◽  
Vol 42 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Leandro Ferreira ◽  
Tadayuki Yanagi Junior ◽  
Wilian Soares Lacerda ◽  
Giovanni Francisco Rabelo

Cloacal temperature (CT) of broiler chickens is an important parameter to classify its comfort status; therefore its prediction can be used as decision support to turn on acclimatization systems. The aim of this research was to develop and validate a system using the fuzzy set theory for CT prediction of broiler chickens. The fuzzy system was developed based on three input variables: air temperature (T), relative humidity (RH) and air velocity (V). The output variable was the CT. The fuzzy inference system was performed via Mamdani's method which consisted in 48 rules. The defuzzification was done using center of gravity method. The fuzzy system was developed using MAPLE® 8. Experimental results, used for validation, showed that the average standard deviation between simulated and measured values of CT was 0.13°C. The proposed fuzzy system was found to satisfactorily predict CT based on climatic variables. Thus, it could be used as a decision support system on broiler chicken growth.


Sign in / Sign up

Export Citation Format

Share Document