scholarly journals Solar Energy in Oman: Performance and Efficiency

Author(s):  
Asmaa Khalfan Saif Al-Falahi

Solar energy is power uses in various techniques to concentrate the energy of the sun and converted into electricity and then supplies it for thousands of people. Furthermore, solar energy efficiency and performance still law it around 15% -21.5% ranging for solar crystalline silicon. Besides that, Oman has a good graphical location for applied solar energy technologies and an increase in efficiency and performance of using solar energy technologies can make economic future development which can help to reduce the dependence on fossil fuels and create a sustainable environment that can make a change in Omani economic diversification. Acutely, the main objective of this research is to study the performance of solar energy in building and enhance solar energy efficiently in Oman. The research methods that used are qualitative and quantitative which are questionnaire and interview that analyzed by using SPSS program and narrative analysis. Moreover, the result analysis of this research display that the performance of solar energy can be improving by Make solar technology clean, install solar energy technology correctly, Provide solar concentrator and avoid the shaded area. Additionally, the efficiency of solar energy can be increased by using many technologies as solar cell glazing, cooling technique Concentrators, and Solar tracking.

Author(s):  
Ademola A. Adenle

Energy was not stated as one of the millennium development goals (MDGs) but played an indirect role in helping meet the MDGs especially in the areas of housing, health, education, and poverty reduction in Africa. In contrast, the United Nations’ 2030 agenda includes 17 sustainable development goals (SDGs), one of which is devoted to energy. SDG7 seeks to ensure “access to affordable, reliable, sustainable, and modern energy for all,” thereby creating a vital role for the energy sector to join in the task of achieving SDGs. Renewable energy including solar energy will play a significant role in improving energy security in Africa and diversifying the energy mix by reducing reliance on fossil fuels. This chapter examines the advantages of solar technologies in the context of social, economic, and environment benefits using case studies from Kenya and South Africa. This chapter also examines some of the key challenges that are associated with the application of solar energy technologies in these countries. Finally, the chapter discusses how solar energy technologies can help meet SDGs and summarizes policy and programs targeting the promotion of solar energy technologies for the implementation of SDGs.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3184 ◽  
Author(s):  
Nazia Yasmin ◽  
Philipp Grundmann

A high level of acceptance and adoption is necessary to facilitate the widespread utilization of renewable energy technologies for cooking, as such utilization is essential for displacing the population’s massive dependence on fossil fuels and solid biomass. Economic and demographic aspects have been the focus of recent literature in exploring the adoption phenomenon of biogas technology. However, literature to date has given little attention to the behavioral factors and the perceptions of the end-users. Our study does not only include behavioral factors, but it employs a hybrid model to explore the continued attentions of users based on their post-adoption beliefs and performance expectations. Using a survey conducted in Pakistan in 2017, the study conducts a multivariate analysis through structural equation modeling to measure the effect of pre- and post-adoption beliefs and expectation on adoption and the continuing intention of households towards biogas technology. Results show that the acceptance of the households towards biogas technology is highly influenced by their perceptions on the benefits, as well as their trust in the technology. The perceived cost and risk attached to the technology are found to be negatively correlated with the acceptance. Households’ intentions to continue the use of biogas technology is highly influenced by the satisfaction level of the users of biogas technology. With the integrated model of adoption and continuation, the study illustrates the dynamic process in obtaining a deeper understanding of a user’s behavior to better formulate the policies for increasing the rate of technology adoption.


2018 ◽  
Vol 24 (2) ◽  
pp. 134
Author(s):  
Robby Rachmatullah ◽  
Dessyana Kardha ◽  
Dani Triwiyanto

The transfer of electrical energy sources from non-renewable fossil fuels to alternative renewable fuels can be made by utilizing solar energy. The working system of arduino uno solar tracking system for STMIK AUB garden lights is by capturing solar energy through solar panels which are then stored inside the battery where the charging process is controlled by solar charge controller. LDR functions to receive and identify the radiated light quantities which are then forwarded into the arduino uno and processed to drive the DC motor that has become one with the solar panel. If the day begins to darken the LDR will inform the arduino uno and then it will be processed by arduino uno to turn on the DC light.


2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


1969 ◽  
Vol 69 (1) ◽  
pp. 45-55
Author(s):  
Y. Shahabasi

Strictly speaking, all forms of energy are derived from the sun. However, our most common forms of energy, fossil-fuels, received their solar input eons ago and have changed their characteristics so that they are now in concentrated form. It is apparent that these stored concentrated energy forms are now being used at such a rapid rate that they will be depleted in the not-toodistant future. It would be useful to utilize the incoming solar energy directly. The effective use of the sun's energy in agriculture by any economically possible means will help the farmers continue their work with no disruption because of the lack of concentrated form of energy. The fluidyne heat engine utilizes solar energy to pump water. The simplicity, reliability, and low cost of this engine are of primary importance for the farmers in the part of the world whereas solar energy is abundant such as Puerto Rico.


2021 ◽  
Author(s):  
David Schwartzman ◽  
Peter Schwartzman

<p>Can the 1.5 deg C warming target still be met with an aggressive phaseout of fossil fuels coupled with a 100% replacement by renewable energy?  We address this question in our modeling study by computing the continuous generation of global wind/solar energy power along with the cumulative carbon dioxide equivalent emissions in a complete phaseout of fossil fuels over a 20 year period. We assume a baseline of energy status at 2018, as well as the EROI of currently available wind/solar energy technologies.  We compare these computed emissions with the state-of-the-science estimates for the remaining carbon budget of carbon dioxide emissions consistent with the 1.5 deg C warming target. Our conclusion is that it is still possible to meet this warming target if the creation of a global 100% renewable energy transition of sufficient capacity begins very soon, coupled with aggressive negative carbon emissions. The latter technology uses a fraction of total renewable energy delivery for direct air capture for permanent crustal storage over the last ten years of this energy transition that is compatible for simulations with no more than 10 to 15 % reinvestment of renewable energy to make more of itself. More efficient renewable technologies in the near future will make this transition easier.  The maximum amount of fossil fuel consumed in our scenarios for the complete transition is no more than 5% of the proven reserves of coal, natural gas and oil as currently estimated.  </p><p> </p><p> </p>


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 18-25 ◽  
Author(s):  
Wim C. Sinke

The term “solar energy” refers to a wide variety of techniques for using the energy available as sunlight. Well-known examples are active and passive thermal solar energy and photovoltaic solar energy but, strictly speaking, hydropower, wind energy, and biomass are also forms of solar energy. Today, only hydropower is used in significant quantities, covering approximately 6% of the world's energy demand. Traditional use of biomass, mainly in developing countries, accounts for more than 10% of the total energy consumption, but is sometimes left out of statistics because it falls outside the category of organized and commercial use.The global potential for solar energy is huge, since the amount of energy that reaches the earth's surface every year exceeds the total energy consumption by roughly a factor of 10,000. There are, however, various barriers to the large-scale use of solar energy technologies. Most technologies have in common that the power density of the generator is low; in other words, one needs large areas to generate significant amounts of energy. This is especially true for biomass, with typical conversion efficiencies (solar energy to chemical energy) of 1% or less. Further, many solar energy technologies have proved technically feasible, but have yet to be proved economically feasible. Last, but not least, the large-scale use of solar energy requires substantial modification of our global energy supply system, which is based largely on fossil fuels.


2017 ◽  
Vol 61 (3) ◽  
pp. 234 ◽  
Author(s):  
Mahadi Hasan Masud ◽  
Md. Shamim Akhter ◽  
Sadequl Islam ◽  
Abdul Mojid Parvej ◽  
Sazzad Mahmud

Solar energy is one of the important sources of renewable energy which can be a feasible alternative to fossil fuels. There are many works has been done in order to incorporate solar energy to everyday transportation including tricycle. However, most of the tricycle develops are expensive and not feasible for developing countries. In this study, a cheaper solar tricycle with more capability of utilizing the solar energy is designed for developing countries. The main content of the tricycle is Solar PV panel, Brushless PMDC motor, controller, and battery. The power transmission of the solar tricycle is also simple. It is found that tricycle serves 24% back up for running, by the solar panel. Also, the total construction cost of the tricycle is only 240$ with near about zero impact on the environment. This paper highlights the advantages of the dual mode of charging, including the economic and environmental feasibility of the tricycle.


This Today's world depends upon utilization of some form of energy. Be it use of mobiles, vehicles, power supply in houses etc., everything functions on the basis of energy input. The use of energy derived from fossil fuels began in early 1800 and is used till date. In the current theme that calls for saving energy and reducing pollution, it’s undoubtedly of great significance to make full use of solar energy. The solar panel system sprouted with the use of a simple magnifying glass to concentrate solar energy which has now revolutionized by using a much higher solar panel system. The framework consists of webcam, electronic circuit, Microprocessor and two DC motors. This solar tracking system is autonomous, dual axis and hybrid type. This tracking system is camera-based and can track the sun continuously. By using Region of Interest algorithm, we can get the sun coordinates from the frame. These values are sent to the microcontroller to actuate the motors and reposition the panel. This framework works free of its primary settings and can be utilized in any geological area. It holds the solar panel opposite to illumination of sun to get the most extreme solar energy and hence produce most effective power yield for the duration of the day. This study yields an output of up to 2-3% increase from a stationary solar panel.


2021 ◽  
Author(s):  
Yaniv Shlosberg ◽  
Matan Meirovich ◽  
Omer Yehezkeli ◽  
Gadi Schuster ◽  
Noam Adir

AbstractEfforts to replace fossil fuels with renewable energy technologies, especially solar energy conversion, continue to improve the potential to produce useful amounts of energy without significant pollution. Utilization of photosynthetic organisms in bio-photo electrochemical cells (BPECs) are a potentially important source of clean energy. Here, we show that it is possible to harvest photocurrent directly from unprocessed plant tissues in specialized BPECs. The source of electrons are shown to originate from the Photosystem II water-oxidation reaction that results in oxygen evolution. In addition to terrestrial and crop plants, we further demonstrate the ability of the desert plant Corpuscularia lehmannii to produce bias-free photocurrent without the addition of an external electrolyte. Finally, we show the use of pond-grown water lilies to generate photocurrent. Different leaves produce photocurrent densities in the range of ∼ 1 – 10 mA / cm2 which is significantly higher than microorganism-based BPECs. The relatively high photocurrent and the simplicity of the plants BPEC may pave the way toward the establishment of first applicative photosynthetic based energy technologies.Broader ContextIt is no secret human society is experiencing an energy and environmental crisis due to our reliance on fossil fuels. In order to promote alternative, cleaner, and more sustainable approaches to energy production, we wish to explore the possibility of using nature’s method of solar energy conversion in the simplest, least polluting, most sustainable fashion possible. Photosynthesis provides a remarkable example of molecular system for solar energy conversion to storable fuels. Many studies have strived to merge natural photosynthesis (as isolated complexes, isolated membranes, or intact microorganisms) with a variety of electrochemical harvesting technologies. In this paper we show that we can directly couple the power of water oxidation by Photosystem II in intact plants to bio-electrochemical cells without the need to perform expensive, complicated, and polluting isolation. We show that current harvesting (up to current densities of 10 mA / cm2) can be performed using plants of different types: plants of agricultural importance, succulents with internal water-based reservoirs and aquatic plants, used in situ in their growth ponds. We also show that with minimal external bias, hydrogen can be obtained, to be used as a clean fuel. We believe that these results can lead to the development of localized clean energy technologies, where the benefits of plant growth for any purpose can be enhanced by obtaining significant amounts of clean energy.


Sign in / Sign up

Export Citation Format

Share Document