scholarly journals Deep Learning in Oncology- A Case Study on Brain Tumor

The brain tumor detection continues to be a challenge owing to the complexity of its symptoms. The research era indicates the tumor diagnosis and identification of tumor exact indicators are still uncertain. These tumors can appear anywhere in the brain and have any kind of shape, size, and contrast. The brain tumor exploration with deep learning is a solution for flexible, high capacity and extreme efficiency. The deep learning is an application of the artificial intelligence with multiple layers helping to predict the outcome of the disease early detection. This paper presents an approach to recognize the indicators and show that deep learning drops error rate for brain tumor diagnoses by 80%.

2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


2021 ◽  
Author(s):  
Pitchai R ◽  
Supraja P ◽  
Razia Sulthana A ◽  
Veeramakali T

Abstract Segmentation of brain tumors is a daunting process comprising the delineation of heterogeneous cancerous tissues and diffuse types in anatomical representations of the brain. Deep learning techniques have recently made important strides in the segmentation of brain tumors. However, owing to the irregularity of the tumor, most of the deep learning-based segmentation techniques are not used directly for tumor detection. Although recent studies are capable of addressing the irregularity issue and retaining permutation invariance, many approaches struggle to catch the valuable high-dimensional local features of finer resolution. Inspired by the fuzzy learning methods and an analysis of the shortcomings of existing methods, an automated fuzzy neighborhood learning-based 3D segmentation technique has been proposed for the detection of cerebrum tumors in 3D images. In this technique, the fuzzy neighborhood function is deeply integrated with the proposed network architecture. This technique has been evaluated on BRATS 2013dataset. The simulation results show that the proposed brain tumor detection technique is superior to other methods in the diagnosis of brain tumors with the dice coefficient of 0.85 and the Jaccard index of 0.74.


Author(s):  
Saudagar Punam

Tumors are complex. There are a lot of variations in sizes and location of tumor. This makes it really hard for complete understanding of tumor. Brain tumour is the abnormal growth of cells inside the brain cranium which limits the functioning of brain. Now a days, medical images processing is a most challenging and developing field. Automated detection of tumor in MRI is extremely crucial because it provides information about abnormal tissues which is important for planning treatment. The conventional method for defect detection in resonance brain images is time consuming. So, automated tumor detection methods are developed because it would save radiologist time and acquire a tested accuracy. The MRI brain tumor detection is complicated task due to complexity and variance of tumors.There are many previously implemented approaches on detecting these kinds of brain tumors. In this paper, we used and implement Convolutional Neural Network (CNN) which is one among the foremost widely used deep learning architectures for classifying a brain tumor into four types. i.e Glioma , Meningioma, Pituitary and No tumour. CNN may be used to effectively locate most cancers cells in brain via MRI. classification.


Author(s):  
K.Ganga Durga Prasad ◽  
A.J.N. Murthy ◽  
G Narasimha ◽  
New Sinha

The brain tumors, are the maximum not unusual place and threatening disease, main to a totally quick lifestyles of their maximum grade. Thus, remedy making plans is a key level to enhance the lifestyles of sufferers. Normally, distinct photo strategies which includes CT, MRI and ultrasound photo are used to hit upon the tumor in a brain. on this approach MRI photos are used to diagnose brain tumor guide type of tumor vs non-tumor is a tough challenge for radiologosts. we gift an approach for detection and type of tumors with inside the brain. The computerized brain tumor type could be very hard challenge in brain tumor. In this approach, computerized brain tumor detection is executedwith the aid of usingthe use of Convolutional Neural Networks (CNN) type.Our proposed automation gadgetcould take an MRI and examine it to locate bengin (non-cancerous) or malignant (cancerous).


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


Author(s):  
Aaishwarya Sanjay Bajaj ◽  
Usha Chouhan

Background: This paper endeavors to identify an expedient approach for the detection of the brain tumor in MRI images. The detection of tumor is based on i) review of the machine learning approach for the identification of brain tumor and ii) review of a suitable approach for brain tumor detection. Discussion: This review focuses on different imaging techniques such as X-rays, PET, CT- Scan, and MRI. This survey identifies a different approach with better accuracy for tumor detection. This further includes the image processing method. In most applications, machine learning shows better performance than manual segmentation of the brain tumors from MRI images as it is a difficult and time-consuming task. For fast and better computational results, radiology used a different approach with MRI, CT-scan, X-ray, and PET. Furthermore, summarizing the literature, this paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. Conclusion: The problem faced by the researchers during brain tumor detection techniques and machine learning applications for clinical settings have also been discussed.


Author(s):  
Tariq Sadad ◽  
Amjad Rehman ◽  
Asim Munir ◽  
Tanzila Saba ◽  
Usman Tariq ◽  
...  

Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


Brain tumor detection from MRI images is a challenging process due to high diversity in the tumor pixels of different peoples. Automatic detection has got wide spread acclaim because the manual detection by experts is time consuming and prone to error in judgment. Due to its high mortality rate, detection of tumor automatically is a new emerging technique in bio medical imaging. Here we present a review of few methods from simple thresholding to advanced deep learning methods for segmentation of tumor from MRI data. The segmentation of tumor methods is classified to image segmentation using gray level processing, machine learning and deep learning. The results of various methods are compared to find the best methods available. As medical imaging methods have improving day by day this review will help to understand emerging trends in brain tumor detection.


Sign in / Sign up

Export Citation Format

Share Document