SN-CUO-ARABIC GUM COMPOSITION FOR RED TRACER PROJECTILE AMMUNITION POTENTIAL

2021 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Abdul Basyir ◽  
Nining Sumawati Asri ◽  
Didik Aryanto ◽  
Isnaeni Isnaeni ◽  
Cherly Firdharini ◽  
...  

<div><p class="Els-history-head">Fundamentally, tracer projectile material based on pyrotechnic composition, and where the pyrotechnic was generally composed of fuel, oxidizer, and binder. The tin (Sn) material is one of the candidates for fuel material because tin has a low melting point, so this composition can ignite at low temperature, while the copper oxide (CuO) can emit the orange-red spectrum. This study aims to evaluate the thermal and spectrum character of Sn-CuO-AG-based composition. The characterization data of these samples was evaluated by tests of morphology and phase, enthalpy change, calorie energy, and spectrum emission. Based on this data, the 17Sn-68CuO-15AG sample was emitted a strong red color too, but this sample has a high or the longest exothermic process. Furthermore, the 27Sn-58CuO-15AG sample has emitted a weak red color with medium exothermic energy. Generally, the 22Sn-63CuO-15AG is more suitable than the two other compositions for the tracer projectile composition of ammunition, this material emits a strong red spectrum and low-calorie energy.</p></div>

Author(s):  
Kazutaka Sonobe ◽  
Makoto Tanabe ◽  
Takane Imaoka ◽  
Wang‐Jae Chun ◽  
Kimihisa Yamamoto
Keyword(s):  

2019 ◽  
Vol 103 (2) ◽  
pp. 889-898 ◽  
Author(s):  
Maoqiao Xiang ◽  
Miao Song ◽  
Qingshan Zhu ◽  
Chaoquan Hu ◽  
Yafeng Yang ◽  
...  

2018 ◽  
Vol 775 ◽  
pp. 238-245 ◽  
Author(s):  
Thitinai Gaewdang ◽  
Ngamnit Wongcharoen

In this paper, copper oxide (CuOx) thin films with amorphous phase were prepared on glass substrates by reactive dc magnetron sputtering. The influence of the flow rate of O2 on the structural, optical and electrical properties of the as-deposited films was systematically studied. XRD revealed that the as-deposited films remained amorphous in the whole range of adjusted oxygen flow rate. Surface morphology and nanoparticle size of the films were observed by AFM. Electrical resistivity and Hall effect measurements were performed on the films with van der Pauw configuration. The positive sign of the Hall coefficient confirmed the p-type conductivity in all studied films. From temperature-dependent electrical conductivity of the films prepared at R(O2) of 1.5 sccm, it was show that three types of behavior can be expected, nearest-neighbor hopping at high temperature range (200-300 K), the Mott variable range hopping at low temperature (110-190 K) and Efros-Shklovskii variable range hopping at very low temperature (65-100 K). Some important parameters corresponding to Mott-VRH and ES-VRH like density of localized states near the Fermi level, localization length, degree of disorder, hopping distance and hopping energy were determined. These parameters would be helpful for optimizing the performance of photovoltaic applications.


2021 ◽  
Vol 1024 ◽  
pp. 103-109
Author(s):  
Shunsuke Makimura ◽  
Hiroaki Kurishita ◽  
Koichi Niikura ◽  
Hun Chea Jung ◽  
Hiroyuki Ishizaki ◽  
...  

Tungsten (W) is a principal candidate as target material because of its high density and extremely high melting point. W inherently has a critical disadvantage of its brittleness at around room temperature (low temperature brittleness), recrystallization embrittlement, and irradiation embrittlement. TFGR (Toughened, Fine Grained, Recrystallized) W-1.1%TiC has been considered as a realized solution to the embrittlement problems. We started to fabricate TFGR W-1.1%TiC in 2016 under collaboration between KEK and Metal Technology Co. LTD (MTC). The TFGR W-1.1%TiC samples were successfully fabricated in June, 2018. As a result, the specimen showed slight bend ductility and 2.6 GPa of fracture strength.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001221-001252 ◽  
Author(s):  
Kei Murayama ◽  
Mitsuhiro Aizawa ◽  
Mitsutoshi Higashi

The bonding technique for High density Flip Chip(F.C.) packages requires a low temperature and a low stress process to have high reliability of the micro joining ,especially that for sensor MEMS packages requires hermetic sealing so as to ensure their performance. The Transient Liquid Phase (TLP) bonding, that is a kind of diffusion bonding is a technique that connects the low melting point material such as Indium to the higher melting point metal such as Gold by the isothermal solidification and high-melting-point intermetallic compounds are formed. Therefore, it is a unique joining technique that can achieve not only the low temperature bonding and also the high temperature reliability. The Gold-Indium TLP bonding technique can join parts at 180 degree C and after bonding the melting point of the junction is shifted to more than 495 degree C, therefore itfs possible to apply the low temperature bonding lower than the general use as a lead free material such as a SAC and raise the melting point more than AuSn solder which is used for the high temperature reliability usage. Therefore, the heat stress caused by bonding process can be expected to be lowered. We examined wafer bonding and F.C bonding plus annealing technique by using electroplated Indium and Gold as a joint material. We confirmed that the shear strength obtained at the F.C. bonding plus anneal technique was equal with that of the wafer bonding process. Moreover, it was confirmed to ensure sufficient hermetic sealing in silicon cavity packages that had been bonded at 180 degree C. And the difference of the thermal stress that affect to the device by the bonding process was confirmed. In this paper, we report on various possible application of the TLP bonding.


2014 ◽  
Vol 11 (1) ◽  
pp. 7-15
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analyses and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 min for process temperatures approximately 50°C above the melting point of the low temperature constituent. For the shear studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of sinter pastes with different ratios of copper and tin have been assessed. A fixture was designed for high temperature enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, and Cu40Sn pastes showed high shear strengths up to 600°C. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need to apply pressure during processing.


1977 ◽  
Vol 50 (4) ◽  
pp. 688-703 ◽  
Author(s):  
J. R. Wolfe

Abstract The properties of elastomeric tetramethylene terephthalate/polyether terephthalate copolymers have been related to the chemical structure, chain length, and concentration in the copolymers of the PTMEG-, PEG-, and PPG-derived polyether units. Low-temperature properties and tear strength are dependent on all three polyether-related variables. Melting point, hardness, and stress at 100% elongation appear to be independent of polyether structure. Polyether glycols of low MW volatilize during copolymer preparation. High-MW polyethers tend to crystallize when present in the copolymers. Polyether glycols of intermediate MW (∼ 1000) yield copolymers with the best resistance to low-temperature stiffening. Copolymer synthesis is most difficult with PPG as the polyether glycol. Inherent viscosities are low, and phase separation occurs at lower polyether MW than with PTMEG or PEG. The PEG-based copolymers exhibit high water swell, particularly at intermediate and high PEG MW. The PTMEG-based copolymers are easiest to synthesize and exhibit the best overall combination of properties.


Sign in / Sign up

Export Citation Format

Share Document