scholarly journals Optimasi Pendistribusian Kelas Pada Dosen di STMIK STIKOM Indonesia Menggunakan Algoritma Genetika

2019 ◽  
Vol 2 (1) ◽  
pp. 145-154
Author(s):  
Aniek Suryanti Kusuma ◽  
Komang Sri Aryati

The stage of class scheduling starts from scheduling courses in classes, then distributing the class to lecturers. The process of distributing classes to lecturers becomes an obstacle for the STMIK STIKOM Indonesia academic body because the academic body must adjust the existing class with the lecturer who is interested in it as well as the lecturer chosen to support a class so that it does not have classes that have a time conflict. One method for solving these problems is by using genetic algorithms that work by generating a number of random solutions and then processing the collection of solutions in a genetic process. There are eight genetic algorithm procedures, which are random chromosome generation procedures, chromosome repair to validate chromosomes from their limits, fitness function to calculate the feasibility of a solution, crossover, mutation, child repair and elitism. The output of this research is in the form of an analysis and determination of the system requirements that must exist. In addition, it produces a trial report on the effect of genetic parameters to determine the effect of changes in the value of genetic parameters on the fitness value and the time used to carry out the distribution process.  

Author(s):  
Jo´zef Flizikowski ◽  
Marek Macko ◽  
Jacek Czerniak ◽  
Adam Mrozinski

Authors of the study propose the method aiming at determination of design properties of a multi-edge grinder. This method is based on a genetic algorithm and its purpose is to optimise the geometric shape of the cutting edges. The input data include population of individuals. Each individual is represented by a set of cutting disks. Whereas the fitness function was assumed as a combination of several postulates of the mechanical design foundations. Those postulates include mechanical, design and energy metrics. Each individual constitutes a complete solution of the disk set whereas the population represents the entire class of solutions. The fitness function of an individual is calculated as the fitness average of each disk supplemented by information describing the relationship between both disks and discs. The method for calculating function values was selected to ensure its maximisation in the process of evolution. Despite promising results of the genetic algorithms operation, one can consider improvement of the method efficiency. The authors used morphological operations in order to better adjust the method to the task. Results of the simulations were verified in laboratory conditions with positive effects.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Andriy Chaban ◽  
Marek Lis ◽  
Andrzej Szafraniec ◽  
Radoslaw Jedynak

Genetic algorithms are used to parameter identification of the model of oscillatory processes in complicated motion transmission of electric drives containing long elastic shafts as systems of distributed mechanical parameters. Shaft equations are generated on the basis of a modified Hamilton–Ostrogradski principle, which serves as the foundation to analyse the lumped parameter system and distributed parameter system. They serve to compute basic functions of analytical mechanics of velocity continuum and rotational angles of shaft elements. It is demonstrated that the application of the distributed parameter method to multi-mass rotational systems, that contain long elastic elements and complicated control systems, is not always possible. The genetic algorithm is applied to determine the coefficients of approximation the system of Rotational Transmission with Elastic Shaft by equivalent differential equations. The fitness function is determined as least-square error. The obtained results confirm that application of the genetic algorithms allow one to replace the use of a complicated distributed parameter model of mechanical system by a considerably simpler model, and to eliminate sophisticated calculation procedures and identification of boundary conditions for wave motion equations of long elastic elements.


Author(s):  
Sourav Kundu ◽  
Kentaro Kamagata ◽  
Shigeru Sugino ◽  
Takeshi Minowa ◽  
Kazuto Seto

Abstract A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 130
Author(s):  
Atiqa Zukreena Zakuan ◽  
Shuzlina Abdul-Rahman ◽  
Hamidah Jantan ◽  
. .

Succession planning is a subset of talent management that deals with multi-criteria and uncertainties which are quite complicated, ambiguous, fuzzy and troublesome. Besides that, the successor selection involves the process of searching the best candidate for a successor for an optimal selection decision. In an academic scenario, the quality of academic staff contributes to achieving goals and improving the performance of the university at the international level. The process of selecting appropriate academic staff requires good criteria in decision-making. The best candidate's position and criteria for the selection of academic staff is the responsibility of the Human Resource Management (HRM) to select the most suitable candidate for the required position. The various criteria that are involved in selecting academic staff includes research publication, teaching skills, personality, reputation and financial performance. Previously, most studies on multi-criteria decision-making adopt Fuzzy Analytical Hierarchy Process (FAHP). However, this method is more complex because it involved many steps and formula and may not produce the optimum results. Therefore, Genetic Algorithm (GA) is proposed in this research to address this problem in which a fitness function for the successor selection is based on the highest fitness value of each chromosome.    


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tng C. H. John ◽  
Edmond C. Prakash ◽  
Narendra S. Chaudhari

This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006). We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.


Author(s):  
V. A. Turchina ◽  
D. O. Tanasienko

One of the main tasks in organizing the educational process in higher education is the drawing up of a schedule of classes. It reflects the weekly student and faculty load. At the same time, when compiling, there are a number of necessary conditions and a number of desirable. The paper considers seven required and four desirable conditions. In this paper, one of the well-known approaches that can be used in drawing up a curriculum is consid-ered. The proposed scheme of the genetic algorithm, the result of which is to obtain an approximate solution to the problem of scheduling with the need to further improve it by other heuristic methods. To solve the problem, an island model of the genetic algorithm was selected and its advantages were considered. In the paper, the author's own structure of the individual, which includes chromosomes in the form of educational groups and genes as a lesson at a certain time, is presented and justified. The author presents his own implementations of the genetic algorithms. During the work, many variants of operators were tested, but they were rejected due to their inefficiency. The biggest problem was to maintain the consistency of information encoded in chromosomes. Also, two post-steps were added: to try to reduce the number of teacher conflict conflicts and to normalize the schedule - to remove windows from the schedule. The fitness function is calculated according to the following principles: if some desired or desired property is present in the individual, then a certain number is deducted from the individual's assessment, if there is a negative property, then a certain number is added to the assessment. Each criterion has its weight, so the size of the fine or rewards may be different. In this work, fines were charged for non-fulfillment of mandatory conditions, and rewards for fulfilling the desired


This paper aims produce an academic scheduling system using Genetic Algorithm (GA) to solve the academic schedule. Factors to consider in academic scheduling are the lecture to be held, the available room, the lecturers and the time of the lecturer, the suitability of the credits with the time of the lecture, and perhaps also the time of Friday prayers, and so forth. Genetic Algorithms can provide the best solution for some solutions in dealing with scheduling problems. Based on the test results, the resulting system can automate the scheduling of lectures properly. Determination of parameter values in Genetic Algorithm also gives effect in producing the solution of lecture schedule


2021 ◽  
Vol 4 ◽  
pp. 29-43
Author(s):  
Nataliya Gulayeva ◽  
Artem Ustilov

This paper offers a comprehensive review of selection methods used in the generational genetic algorithms.Firstly, a brief description of the following selection methods is presented: fitness proportionate selection methods including roulette-wheel selection (RWS) and its modifications, stochastic remainder selection with replacement (SRSWR), remainder stochastic independent selection (RSIS), and stochastic universal selection (SUS); ranking selection methods including linear and nonlinear rankings; tournament selection methods including deterministic and stochastic tournaments as well as tournaments with and without replacement; elitist and truncation selection methods; fitness uniform selection scheme (FUSS).Second, basic theoretical statements on selection method properties are given. Particularly, the selection noise, selection pressure, growth rate, reproduction rate, and computational complexity are considered. To illustrate selection method properties, numerous runs of genetic algorithms using the only selection method and no other genetic operator are conducted, and numerical characteristics of analyzed properties are computed. Specifically, to estimate the selection pressure, the takeover time and selection intensity are computed; to estimate the growth rate, the ratio of best individual copies in two consecutive populations is computed; to estimate the selection noise, the algorithm convergence speed is analyzed based on experiments carried out on a specific fitness function assigning the same fitness value to all individuals.Third, the effect of selection methods on the population fitness distribution is investigated. To do this, there are conducted genetic algorithm runs starting with a binomially distributed initial population. It is shown that most selection methods keep the distribution close to the original one providing an increased mean value of the distribution, while others (such as disruptive RWS, exponential ranking, truncation, and FUSS) change the distribution significantly. The obtained results are illustrated with the help of tables and histograms.


Author(s):  
Ade chandra Saputra

One of the weakness in backpropagation Artificial neural network(ANN) is being stuck in local minima. Learning rate parameter is an important parameter in order to determine how fast the ANN Learning. This research is conducted to determine a method of finding the value of learning rate parameter using a genetic algorithm when neural network learning stops and the error value is not reached the stopping criteria or has not reached the convergence. Genetic algorithm is used to determine the value of learning rate used is based on the calculation of the fitness function with the input of the ANN weights, gradient error, and bias. The calculation of the fitness function will produce an error value of each learning rate which represents each candidate solutions or individual genetic algorithms. Each individual is determined by sum of squared error value. One with the smallest SSE is the best individual. The value of learning rate has chosen will be used to continue learning so that it can lower the value of the error or speed up the learning towards convergence. The final result of this study is to provide a new solution to resolve the problem in the backpropagation learning that often have problems in determining the learning parameters. These results indicate that the method of genetic algorithms can provide a solution for backpropagation learning in order to decrease the value of SSE when learning of ANN has been static in large error conditions, or stuck in local minima


Author(s):  
Sushrut Kumar ◽  
Priyam Gupta ◽  
Raj Kumar Singh

Abstract Leading Edge Slats are popularly being put into practice due to their capability to provide a significant increase in the lift generated by the wing airfoil and decrease in the stall. Consequently, their optimum design is critical for increased fuel efficiency and minimized environmental impact. This paper attempts to develop and optimize the Leading-Edge Slat geometry and its orientation with respect to airfoil using Genetic Algorithm. The class of Genetic Algorithm implemented was Invasive Weed Optimization as it showed significant potential in converging design to an optimal solution. For the study, Clark Y was taken as test airfoil. Slats being aerodynamic devices require smooth contoured surfaces without any sharp deformities and accordingly Bézier airfoil parameterization method was used. The design process was initiated by producing an initial population of various profiles (chromosomes). These chromosomes are composed of genes which define and control the shape and orientation of the slat. Control points, Airfoil-Slat offset and relative chord angle were taken as genes for the framework and different profiles were acquired by randomly modifying the genes within a decided design space. To compare individual chromosomes and to evaluate their feasibility, the fitness function was determined using Computational Fluid Dynamics simulations conducted on OpenFOAM. The lift force at a constant angle of attack (AOA) was taken as fitness value. It was assigned to each chromosome and the process was then repeated in a loop for different profiles and the fittest wing slat arrangement was obtained which had an increase in CL by 78% and the stall angle improved to 22°. The framework was found capable of optimizing multi-element airfoil arrangements.


Sign in / Sign up

Export Citation Format

Share Document