scholarly journals Optimization of the electro coagulation process for the removal of cadmium from aqueous solution using RSM

Author(s):  
Zahraa Adil Sadoon ◽  
Mohanad J. M-Ridha

A certain of industrialized wastewater streams include heavy metal ions, should be efficiently removal before the reuse or discharge of treated waters could occur. In this work, the removal of cadmium from aqueous solution was carried out by electro coagulation using aluminum electrodes as anode and cathode. Electro coagulation cell of 1litter was used in this research. Several operating parameters on the removal efficiency of cadmium were investigated, such as initial pH, voltage, initial cadmium  ion concentration, NaCl concentration, spacing between electrodes, and  type of electrode . The Cd(II) concentration (50 ,100,150,200 ppm),( stirring speed 120 rpm) at room temperature . A pH was use   to be a constant best value when studied the  impact  of voltage values were chosen as 6,10,  and 14 increasing voltage  increased Cd(II) removals significantly Removal of 30.1%, 94.1%, 97.4%. The optimum removal efficiency of 97.4 % was achieved at a voltage of 14 V and pH 5 using (Al/Al.) electrodes, within 60 min of operating time. The concentration of NaCl was 0.6 g/l with a 0. 5 cm spacing between the electrodes.

2020 ◽  
Vol 26 (2) ◽  
pp. 14-28
Author(s):  
Zahraa A Sadoon ◽  
Mohanad J. M-Ridha

The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant. The impact of voltage values was chosen as 6, 10, and 14 Volts. On increasing voltage dyes, removals increased significantly. The higher removal efficiency of dyes (99.9%) was achieved at (30) minutes for (Al/Al) electrodes at pH 6.5-7 and voltage 14 Volts. The results showed that the best amount of sodium chloride was found to be 600 ppm in dyes, voltage of 14 Volts, and best gap between the electrodes as 0.5 cm.


2013 ◽  
Vol 800 ◽  
pp. 555-559
Author(s):  
Xin Liu ◽  
Jin Hong Fan ◽  
Lu Ming Ma

Oxidative degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution at room temperature and pressure by the bimetallic Al-Fe/O2 process, which was verified by the addition of benzoic acid as ·OH scavenger and the detection of para-hydroxybenzoic acid, was investigated. The results showed that the removal efficiency of EDTA, TOC and TN could be about 98%, 77.5% and 43% respectively after 3h reaction when the initial pH was 5. The effects of initial pH, concentration of EDTA, mass ratio of Al0 and Fe0 and Al-Fe loading were also investigated. Significantly, the bimetallic Al-Fe process exhibited higher reactivity than monometallic Fe0/Al0 process for the degradation of EDTA when the mass ratio of Al0 and Fe0 ranged from 0.11 to 2.97.


Author(s):  
Haiyan Song ◽  
Wei Liu ◽  
Fansheng Meng ◽  
Qi Yang ◽  
Niandong Guo

Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However, nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were studied. The results showed that the initial pH was a principal factor. The presence of HPO42−, NO3−, and Cl− had a strong inhibitory effect on this process, while the presence of SO42− promoted the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction. Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced electron transportability weakened the influence of passivation layers and improved the dispersion of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and fresh Fe0 core was exposed, which improved the reactivity of the composites.


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2011 ◽  
Vol 255-260 ◽  
pp. 2797-2801
Author(s):  
Chen Yao ◽  
Chun Juan Gan ◽  
Jian Zhou

Effect of environment factors such as initial pH value, dissolved oxygen (DO) and temperature on phosphorus removal efficiency of phosphate reduction system was discussed in treating pickled mustard tube wastewater. Results indicate that environment factors have significant influence on dephosphorization efficiency. And, the impact of DO on phosphate reduction is mainly by affecting the distribution of micro-environment inner biofilm, manifest as phosphate removal rate decreased with a fall in DO concentration, while overhigh DO can lead to detachment of biofilm, thus causing the increase of effluent COD concentration, and so DO need to be controlled in the range of 6 mg/L. Moreover, a higher temperature is more beneficial to phosphorus removal by PRB. Unfortunately, exorbitant temperature can result in mass rearing of Leuconostoc characterized with poor flocculability in reactor, and that cause turbidity in effluent appeared as a rise in COD of effluent. Hence, the optimal temperature is found to be about 30°C.


2017 ◽  
Vol 17 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
E. Karamati Niaragh ◽  
M. R. Alavi Moghaddam ◽  
M. M. Emamjomeh

Abstract This study aims to investigate the effect of the main parameters on the performance of a continuous flow electro-coagulation (EC) process for nitrate removal efficiency and its operating costs. For this purpose, the Taguchi experimental design with orthogonal array L27 (313) was applied to analyze the effects of selected parameters, namely initial nitrate concentration, inlet flow rate, current density and initial pH. According to the analysis of variance results, the inlet flow rate and the current density were recognized to be the most effective factors playing a pivotal role in nitrate removal efficiency by using an EC process. The optimum conditions of initial nitrate concentration, inlet flow rate, current density and initial pH were found to be 100 mg/L, 50 mL/min, 80 A/m2 and 8, respectively. As a result, the observed nitrate removal efficiency under these conditions was 61.70%. In addition, operating costs were evaluated as 1.278 US$/g NO3-removed. Finally, a high correlation was observed between the experimental and predicted results indicating an appropriate accuracy of the Taguchi model for nitrate removal efficiency and its operating costs in an EC system.


2014 ◽  
Vol 900 ◽  
pp. 160-164 ◽  
Author(s):  
Long Jiao ◽  
Pei Shi Qi ◽  
Yun Zhi Liu ◽  
Bo Wang

In this study, Fe3O4 and TiO2 nanocomposites embedded sodium alginate (SA) beads were synthesized, which exhibited a robust performance of efficient adsorption in Pb (II) removal. Effects of lead ion concentration, initial pH , Pb (II) of contact time and no Tio2 in mixture on final removal efficiency were also evaluated. The results showed that Pb2+concentration increased from 25 to 200 mg/L, beads of adsorption capacity increased from 25 to 95 mg/g, the optimum pH for adsorption is located at 6.2 and the adsorption balance is around 240 minutes in 298K. The effect of the synthetic materials to add light catalyst is better, and removal efficiency can reach more than 95%.This work provides a practical and high-efficient method for heavy metal removal from water and sediment. Particles can be used to effectively handle containing low concentration of Pb2+ (< 200 mg/L) of water and sediment pollution.


2017 ◽  
Vol 8 (2) ◽  
pp. 278-292 ◽  
Author(s):  
M. A. Ahangarnokolaei ◽  
H. Ganjidoust ◽  
B. Ayati

Abstract Dyes are persistent compounds that are not easily biodegraded and are considered as carcinogenic. Electro-coagulation and electro-flotation method, due to its adaptability and compatibility with the environment, is regarded as one of the appropriate methods for the treatment of industrial wastewater containing dye. In this study in which stainless steel mesh electrodes with a horizontal arrangement are used, the most important parameters affecting the performance of the simultaneous system of electro-coagulation and electro-flotation, including electrodes area, of distance between electrodes, electrical conductivity of the solution, type of electrolyte, and initial pH were examined. The effect of every one of these parameters in color removal efficiency of Acid Red 14 from artificial wastewater, energy consumption and anode was determined and their values were optimized. The area of the electrode equals 20.5 cm2, the distance between the electrodes is 0.5 cm, electrical conductivity 3,600 μS/cm, and initial pH 7 were selected as the optimum values, and dye removal efficiency of 99% with initial concentration of 150 mg/L and electric current density 40 mA/cm2 (0.8 A) were obtained under optimum conditions and within 20 minutes. The advantages of this method are low energy and material consumption, and low sludge production.


2018 ◽  
Vol 54 (4B) ◽  
pp. 88
Author(s):  
Tran Tuan Viet

This study aimed to apply electro-coagulation method using cylindrical Aluminum electrode in continuous mode to remove total phosphorus (T-P) in municipal wastewater. The effects of NaCl concentration (or conductivity) and hydraulic retention time (HRT, or flow rate) on T-P removal efficiency were investigated. To determine the efficiency of this system the ratio Al consumption/T-P removal was also considered. The results showed that, with raw sewage as influent, HRT = 1.17 min and added NaCl = 0.04 % was found the best conditions for the highest T-P removal efficiency (92.80 %; T-P concentration remainder was 0.17 mg/L) and the ratio Al consumption/T-P removal was 5.0. In general, this method achieves a high efficiency of removing phosphorus from wastewater and it can be used in sewage treatment systems.


2011 ◽  
Vol 148-149 ◽  
pp. 357-360
Author(s):  
Jin Bo Huang ◽  
Min Cong Zhu ◽  
Zhi Fang Zhou ◽  
Hong Xia Zhang

Expanded graphite (EG) was prepared by microwave irradiation and evaluated as adsorbent for the removal of disperse blue 2BLN (DB) from aqueous solution by the batch adsorption technique under different conditions of initial pH value, adsorbent dosage, initial dye concentration and contact time. The experimental data were analyzed considering pseudo-first-order, pseudo-second-order and intra-particle diffusion approaches. The adsorption kinetics at room temperature could be expressed by the pseudo second order model very well. The results indicate that the adsorption rate is fast enough and more than eighty percent of the adsorbed DB can be removed in the first 15 min at room temperature, which makes the process practical for industrial application.


Sign in / Sign up

Export Citation Format

Share Document