scholarly journals Thiazolo-Pyrimidine Analogues: Synthesis, Characterization and Docking Studies Guided Antimicrobial Activities

2020 ◽  
Vol 11 (2) ◽  
pp. 9443-9455

In the current study, bicyclic 1-(7-methyl-3,5-diphenyl-5H-thiazolo(3,2-α)pyrimidine-6-yl)ethanone (4a-l) derivatives have been designed and conveniently synthesized by one-pot three-component method via cyclocondensation of substituted 4-phenylthiazole-2-amine (1a-c), acetylacetone (2) and various aromatic aldehydes (3a-d) in the presence of p-toluene sulfonic acid (PTSA) under acetonitrile solvent medium. The synthesized compounds (4a-l) have been characterized by spectral analysis and subjected to docking study against protein DNA gyrase (PDB Code: 1KZN), and also, the compounds were screened for their in vitro antimicrobial activities. The bioassay of the synthesized compounds envisioned that the compound 4k emerged as a broad-spectrum antibacterial agent, and 4l emerged as a good antifungal agent compared to standard drug.

2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2010 ◽  
Vol 65 (12) ◽  
pp. 1509-1515 ◽  
Author(s):  
Manjunatha Kumsi ◽  
Boja Poojary ◽  
Prajwal Lourdes Lobo ◽  
Nalilu Suchetha Kumari ◽  
Anoop Chullikana

The key precursor rac-2-(4-isobutylphenyl)ethyl-1,2,4-triazole-5-thione (3) was synthesized in good yield from Ibuprofen (1). One-pot three-component reactions of 3 with 5-aryl-furan-2-carboxaldehydes/ substituted aromatic aldehydes and monochloroacetic acid in acetic acid in the presence of acetic anhydride and anhydrous sodium acetate afforded substituted thiazolo[3,2-b][1,2,4]triazole derivatives 4 and 5. The structures of the newly synthesized compounds were elucidated by elemental analyses and spectral data. The compounds were tested for their in-vitro antimicrobial activities.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


2021 ◽  
Vol 11 (5) ◽  
pp. 12925-12936

A novel one-pot three-component synthesis of 1-(7-methyl-2,5-diphenyl-5H-[1,3,4]thiadiazolo(3,2-α)pyrimidine-6-yl)ethanone (4a-i) derivatives via cyclo-condensation of substituted 2-amino-[1,3,4]thiadiazole (1a-c), acetylacetone (2) and various aromatic aldehydes (3a-c) in the presence of p-toluene sulfonic acid (PTSA) in acetonitrile. Spectral data and elemental analysis have characterized the newly synthesized compounds. The new analogs were screened for their antibacterial and antifungal activities. The majority of the tested compounds displayed significant to moderate efficacy against most of the designated organisms. Among the tested compounds, 4b, 4e, and 4h showed noteworthy efficacy against selected microbes, and compounds 4c and 4i were found to be exceptionally efficient against selected fungal strains. Compound 4c, 4e, 4f, 4i were also designated as best antioxidants against NOx.


2022 ◽  
Vol 18 ◽  
Author(s):  
Hamideh. Emtiazi ◽  
Ali Salari Sharif ◽  
Mina Ardestani

Background: Pyranopyrazoles have a variety of biological activities and can be obtained by various starting materials and synthetic methods. Also, pyrazolopyrano[2,3-b]quinolins that contain pyranopyrazole moiety, have some biological activities such as anti acetylcholinesterase, anti butyrylcholinesterase activity. In this research, our objective is to prepare pyranopyrazole compounds and pyrazolopyrano[2,3-b]quinolins in a simple way and then evaluate their antibacterial effect. Methods: In this study, pyrano[2,3-c]pyrazole derivatives have been synthesized by condensing malononitrile, aromatic aldehydes, and 3-methyl-1-phenyl-2-pyrazolin-5-one in the presence of magnesium perchlorate as a catalyst. Then we prepared pyrazolopyrano[2,3-b]quinolins via subsequent Friedlander reaction between cyclohexanone and the obtained pyrano[2,3-c]pyrazoles. Also, the antimicrobial activity of the synthesized pyrazolopyrano[2,3-b]quinolins against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli were measured. Then we studied molecular docking of them to find the predicted compounds' interactions and binding energy with DNA-gyrase with the AutoDock 4.2 software. Results: Pyrazolopyrano[2,3-b]quinolins were synthesized in optimized conditions. Evaluation of their antibacterial activities showed that these compounds have moderate to good antibacterial activities against four bacteria species. Also molecular docking tests of docked compounds showed a strong bonding interaction with DNA-Gyrase and had been docked into the intercalation place of DNA of DNA-gyrase complex. The molecule bounded to the DNA stabilized by the H bonds, hydrophobic interactions, and π-π interaction. Conclusion: We have developed an efficient and one-pot ecofriendly protocol for the synthesis of some novel pyrano[2,3-c]pyrazol derivatives and pyrazolopyrano[2,3-b]quinolins under simple conditions and then tested them for their antibacterial activities. Also, we studied molecular docking of them. These compounds showed moderate to good inhibitory action.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-6
Author(s):  
R Bharathi ◽  
◽  
N Santhi ◽  

A series of chalcones were synthesised by condensation of appropriate acetophenones with appropriate aromatic aldehydes, and their anti-inflammatory activities were investigated. In comparison to standard drugs, some have been found to have important activity. In silico docking, tests on chalcones were shown to be more selective to COX-2. Further anti-inflammatory results were supported by docking studies with COX-2. The results from the anti-inflammatory and docking indicate that the synthesised compounds 3b, 3g and 3h can be seen as therapeutic drugs.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5205
Author(s):  
Samar El-Kalyoubi ◽  
Fatimah Agili

Ethyl 5-arylpyridopyrimidine-6-carboxylates 3a–d were prepared as a one pot three component reaction via the condensation of different aromatic aldehydes and ethyl acetoacetate with 6-amino-1-benzyluracil 1a under reflux condition in ethanol. Additionally, condensation of ethyl 2-(2-hydroxybenzylidene) acetoacetate with 6-amino-1-benzyluracil in DMF afforded 6-acetylpyridopyrimidine-7-one 3e; a facile, operationally, simple and efficient one-pot synthesis of 8-arylxanthines 6a–f is reported by refluxing 5,6-diaminouracil 4 with aromatic aldehydes in DMF. Moreover, 6-aryllumazines 7a–d was obtained via the reaction of 5,6-diaminouracil with the appropriate aromatic aldehydes in triethyl orthoformate under reflux condition. The synthesized compounds were characterized by spectral (1H-NMR, 13C-NMR, IR and mass spectra) and elemental analyses. The newly synthesized compounds were screened for their anticancer activity against lung cancer A549 cell line. Furthermore, a molecular-docking study was employed to determine the possible mode of action of the synthesized compounds against a group of proteins highly implicated in cancer progression, especially lung cancer. Docking results showed that compounds 3b, 6c, 6d, 6e, 7c and 7d were the best potential docked compounds against most of the tested proteins, especially CDK2, Jak2, and DHFR proteins. These results are in agreement with cytotoxicity results, which shed a light on the promising activity of these novel six heterocyclic derivatives for further investigation as potential chemotherapeutics.


2020 ◽  
Vol 13 (1) ◽  
pp. 227-231
Author(s):  
Marapala Kumara Swamy ◽  
N. Venkatesh ◽  
M. Swapna ◽  
P. Venkateswar Rao

A microwave assisted green synthetic methodoloy was developed for the synthesis various substituted pyrrolidinones derivatives by the one-pot three component reaction of aromatic aldehydes, aniline with dialkylbut-2-ynedioate in the presence of p-TsOH in water medium. The compounds were screened for their in vitro antimicrobial activity against four bacterial organism and two fungal organisms, resulted moderate to good activity with compared to their standard drug.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7119
Author(s):  
Huda R. M. Rashdan ◽  
Aboubakr H. Abdelmonsef ◽  
Mortaga M. Abou-Krisha ◽  
Tarek A. Yousef

2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from −9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.


2021 ◽  
pp. 174751982098880
Author(s):  
Elshimaa M Eid ◽  
Huwaida ME Hassaneen ◽  
Samah A Loutfy ◽  
Taher Salaheldin

Catalysis using supported gold nanoparticles has attracted significant research interest due to their unique properties and potential that is directly related to their particle size. An efficient one-pot, three-component procedure is developed for the preparation of pyrimido[4,5- b][1,6]naphthyridin-4( 1H)-one derivatives (4a–h) by cyclocondensation of 6-amino-2-thioxo-2,3-dihydropyrimidin-4( 1H)-one (1), aromatic aldehydes (2), and 1-benzylpiperidin-4-one (3) in the presence of zeolite-nano Au as a green catalyst in ethanol at 80 °C. The presented methodology has a number of advantages including a reusable catalyst, easy access, short reaction times, high yields, and an easy work-up. The nanogold catalyst is characterized by X-ray diffraction and transmission electron microscopy. The structures of the prepared compounds are established by elemental analyses and spectral data (infrared, mass spectrometry, 1H, and 13C NMR). While molecular docking studies show that products 4a and 4c have binding affinities with the active site of CDKs. A bio-evaluation assay revealed that some of the products exhibit strong to moderate effects against proliferation of Huh7 in an in vitro model of human liver cancer cells as confirmed by morphological alteration. Compounds 4c and 4a offer the lowest IC50 values at 22.5 and 39 µM, respectively.


Sign in / Sign up

Export Citation Format

Share Document