scholarly journals Impregnated Nanofibrous Mat with Nanogel of Citrus sinensis Essential Oil as a New Type of Dressing in Cutaneous Leishmaniasis

2020 ◽  
Vol 11 (4) ◽  
pp. 11066-11076

Leishmaniases are a group of diseases caused by the Leishmania genus. Essential oils (EO)s have recently received more attention for the development of new green drugs. In this study, Citrus sinensis EO was used as an antileishmanial agent; its half-maximal inhibitory concentration (IC50) against promastigotes of Leishmania tropica and Leishmania major was observed at 151.13 and 108.31 µg/mL. After that, the nanoemulsion-based nanogel of C. sinensis was prepared to improve its stability, potency, and facilitated topical usage. By adding carbomer 940 (2% w/v) to the prepared nanoemulsion with a 225 ± 7 nm droplet size, the nanogel was prepared. The nanogel was then impregnated on the electrospun nanofibers of chitosan-polycaprolactone, diameter = ~ 200 nm. The prototype's leishmanicidal effect was substantially better than the non-formulated EO; both species' viabilities were reduced to ~ 0%. The prepared sample could be used as a new type of dressing for cutaneous leishmaniasis; moreover, it could be considered an excellent candidate for in-vivo studies.

2012 ◽  
Vol 6 (11) ◽  
pp. e1927 ◽  
Author(s):  
Estefania Calvo-Álvarez ◽  
Nestor Adrian Guerrero ◽  
Raquel Álvarez-Velilla ◽  
Christopher Fernández Prada ◽  
Jose María Requena ◽  
...  

2013 ◽  
Vol 27 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Nasibeh Beheshti ◽  
Saied Soflaei ◽  
Mojtaba Shakibaie ◽  
Mohammad Hossein Yazdi ◽  
Fatemeh Ghaffarifar ◽  
...  

2002 ◽  
Vol 70 (8) ◽  
pp. 4638-4642 ◽  
Author(s):  
Muna Qadoumi ◽  
Inge Becker ◽  
Norbert Donhauser ◽  
Martin Röllinghoff ◽  
Christian Bogdan

ABSTRACT Cytokine-inducible (or type 2) nitric oxide synthase (iNOS) is indispensable for the resolution of Leishmania major or Leishmania donovani infections in mice. In contrast, little is known about the expression and function of iNOS in human leishmaniasis. Here, we show by immunohistological analysis of skin biopsies from Mexican patients with local (LCL) or diffuse (DCL) cutaneous leishmaniasis that the expression of iNOS was most prominent in LCL lesions with small numbers of parasites whereas lesions with a high parasite burden (LCL or DCL) contained considerably fewer iNOS-positive cells. This is the first study to suggest an antileishmanial function of iNOS in human Leishmania infections in vivo.


2016 ◽  
Vol 60 (5) ◽  
pp. 2932-2940 ◽  
Author(s):  
Douglas R. Rice ◽  
Paola Vacchina ◽  
Brianna Norris-Mullins ◽  
Miguel A. Morales ◽  
Bradley D. Smith

ABSTRACTCutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes towardLeishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy ofL. majorpromastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using anin vitroassay. All tested complexes exhibited selective toxicity againstL. majoraxenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages.In vivotreatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. majorin a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Meliana Borilli Pereira ◽  
Bruna Gomes Sydor ◽  
Karla Gabriela Memare ◽  
Thaís Gomes Verzignassi Silveira ◽  
Sandra Mara Alessi Aristides ◽  
...  

Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1094 ◽  
Author(s):  
Anna Schachner ◽  
Gabriel Gonzalez ◽  
Lukas Endler ◽  
Kimihito Ito ◽  
Michael Hess

After analyzing 27 new genomes from fowl adenovirus (FAdV) field isolates and so-far unsequenced prototypes, we report the first evidence for recombination in FAdVs. Recombination was confined to species FAdV-D and FAdV-E, accommodating the largest number of, and the intraspecies-wise most differentiated, types. The majority of detected events occurred in FAdV-E, involving segments with parental origin of all constitutive types. Together with the diversity of breakpoints, this suggests widespread recombination in this species. With possible constraints through species-specific genes and diversification patterns, the recombinogenic potential of FAdVs attains particular interest for inclusion body hepatitis (IBH), an important disease in chickens, caused by types from the recombination-prone species. Autonomously evolving, recombinant segments were associated with major sites under positive selection, among them the capsid protein hexon and fiber genes, the right-terminal ORFs 19, 25, and the ORF20/20A family. The observed mosaicism in genes indicated as targets of adaptive pressures points toward an immune evasion strategy. Intertypic hexon/fiber-recombinants demonstrated hybrid neutralization profiles, retrospectively explaining reported controversies on reference strains B3-A, T8-A, and X11-A. Furthermore, cross-neutralization supported sequence-based evidence for interdomain recombination in fiber and contributed to a tentatively new type. Overall, our findings challenge the purported uniformity of types responsible for IBH, urging more complete identification strategies for FAdVs. Finally, important consequences arise for in vivo studies investigating cross-protection against IBH.


2021 ◽  
pp. 088532822110013
Author(s):  
Mohsen Doostmohammadi ◽  
Hamid Forootanfar ◽  
Mojtaba Shakibaie ◽  
Masoud Torkzadeh-Mahani ◽  
Hamid-Reza Rahimi ◽  
...  

In this study, polycaprolactone/gelatin (PCL/GEL) electrospun nanofibers containing biogenic selenium nanoparticles (Se NPs) and Se NPs/vitamin E (VE) with average diameters of 397.8 nm and 279.5 nm, respectively (as determined by SEM inspection) were prepared and their effect on wound healing was evaluated using in-vivo studies. The energy dispersive X-ray (EDX) mapping, TEM micrograph, and FTIR spectra of the prepared nanofibers strongly demonstrated well entrapment of Se NPs and VE into scaffolds. An amount of 57% Se NPs and 43% VE were gradually released from PCL/GEL/Se NPs/VE scaffold after 4 days immersion in PBS solution (pH 7.4). The both PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds supported 3T3 cell proliferation and attachment as confirmed by MTT assay and SEM imaging. Complete re-epithelialization, low level of edema and inflammatory cells in coordination with high level of oriented collagens demonstrated the wound healing activity of PCL/GEL/Se NPs/VE. Besides, significant antioxidant efficacy of PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds was demonstrated according to GSH and MDA assays. To sum up, the prepared PCL/GEL/Se NPs/VE scaffold in the present study represented suitable healing effect on animal model which candidate it for further studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amnah Asiri ◽  
Syafiqah Saidin ◽  
Mohd Helmi Sani ◽  
Rania Hussien Al-Ashwal

AbstractIn this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O–H and N–H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198–286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young’s modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14–21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.


Sign in / Sign up

Export Citation Format

Share Document