scholarly journals Quality by Design Approach for Formulation and Optimization of Microparticles Based Inhalable Phytopharmaceuticals of Trigonella Foenum-Graecum and Alpinia Galanga

2021 ◽  
Vol 12 (2) ◽  
pp. 2050-2067

Chronic obstructive pulmonary disease has been the most widespread worldwide health problem that has influenced millions of people worldwide. The freeze-dried inhalable microparticles (FDIMs) of Trigonella foenum-graecum and Alpinia galanga extracts were synthesized by simple emulsification solvent evaporation technique using polyvinyl pyrrolidone K30 (PVP K30) and polyethylene glycol 6000 (PEG 6000) and were optimized using Box-Behnken design (BBD). Mannitol was utilized for surface modification of FDIM for enhancing their aerodynamic characteristics. The independent parameters which were utilized in the optimization strategy were herbal extract: polymer (w/w, X1), mannitol (% w/v, X2), and surfactant (% v/v, X3). The studied response variables were mean diameter (µm) (Y1) and bulk density (g/cc) (Y2). The present study concluded that optimized FDIMs could be successfully manufactured using herbal extract: polymer (1:2 w/w), mannitol (4.616 % w/v) and surfactant (1.5 % v/v), which had 0.977 desirability functions. The predicted values of response parameters of optimized FDIMs were found at 1.326 µm mean diameter and 0.244 g/cc bulk density. The percentage relative error between actual and model-predicted values of mean diameter and bulk density for optimized FDIM was found 4.09 and 2.45%, respectively (< 5%), which authenticated the articulacy of the optimization approach.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Yassine Khlifi ◽  
Majid Alotaibi

AbstractOptical label switching is introduced for ensuring fast data transfer, quality of service (QoS) support, and better resource management. However, the important issue is how to optimize resource usage and satisfy traffic constraints for improving network performance and design. This paper proposes a dynamic approach that optimizes the resource in terms of link capacity and FDL (fiber delay line) buffering as well as a wavelength converter. The proposed approach decreases the resources usage and guarantees QoS support for various traffic demands. The optimization strategy consists of two stages: path building and traffic management. The path building assures logical topology making using the cumulative cost of available resource and traffic requirements including unicast and multicast. The traffic management solves the resource formulation problem during the traffic transfer by guaranteeing the required loss and blocking delay. Simulation work is conducted for validating the proposed approach and evaluating its performances and effectiveness. Simulation results show that our proposal minimizes effectively the use of link capacity of lightpath and light-tree. Moreover, our approach optimizes the use of buffering capacity and wavelength converter and guarantees QoS support according to traffic requirements.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Till M. Biedermann ◽  
M. Reich ◽  
C. O. Paschereit

Abstract A novel modeling strategy is proposed which allows high-accuracy predictions of aerodynamic and aeroacoustic target values for a low-pressure axial fan, equipped with serrated leading edges. Inspired by machine learning processes, the sampling of the experimental space is realized by use of a Latin hypercube design plus a factorial design, providing highly diverse information on the analyzed system. The effects of four influencing parameters (IP) are tested, characterizing the inflow conditions as well as the serration geometry. A total of 65 target values in the time and frequency domains are defined and can be approximated with high accuracy by individual artificial neural networks. Furthermore, the validation of the model against fully independent test points within the experimental space yields a remarkable fit, even for the spectral distribution in 1/3-octave bands, proving the ability of the model to generalize. A metaheuristic multi-objective optimization approach provides two-dimensional Pareto optimal solutions for selected pairs of target values. This is particularly important for reconciling opposing trends, such as the noise reduction capability and aerodynamic performance. The chosen optimization strategy also allows for a customized design of serrated leading edges, tailored to the specific operating conditions of the axial fan.


2017 ◽  
Vol 5 (3) ◽  
pp. 391-397 ◽  
Author(s):  
SWAPNIL G. JAISWAL ◽  
BHUSHAN R. DOLE ◽  
SANGRAM K. SATPATHY ◽  
S.N. NAIK

Seabuckthorn is a highly perishable fruit found in trans-Himalayan region and North-Eastern part of India. It has enormous nutritional and medicinal properties. Physical attributes of fruits play an important role in the design of machines to meet various harvest and post harvest operations. In the present study properties like dimensions, true density, bulk density, sphericity, porosity and angle of repose were measured and correlated with the mass of the fruit. In addition linear, polynomial, quadratic, logarithmic and exponential models were used for mass and surface area. The length, diameter, thousand berry weight, geometric mean diameter, arithmetic mean diameter, surface area, aspect ratio, angle of repose, sphericity, porosity, true density, bulk density, moisture content were found in the range of 6.5-7.5, 4.74-6.28, 362.67-910.14, 5.49-6.99, 6.17-6.24, 76.87-154.76, 72.81-83.73, 3.59-6.82, 65.84-90.47, 17.05-60.07, 647.19-1399.24, 453.81-725.88, 84.53-87.34 respectively. Polynomial model was suited to be best for mass with length and diameter. Polynomial model between surface area and geometric mean diameter gave highest R2 of 0.981.


Heart disease is measured as a common disease all over the world. The ultimate target is to provide heart disease diagnosis with improved feature selection with Glow worm swarm optimization algorithm. The anticipated model comprises of optimization approach for feature selection and classifier for predicting heart disease. This system framework comprises of three stages: 1) data processing, 2) feature selection using IGWSO approach and classification with conventional machine learning classifiers. Here, C4.5 classifier is considered for performing the function. The benchmark dataset that has been attained from UCI database was cast off for performing computation. Maximal classification accuracy has been achieved based on cross validation strategy. Outcomes depicts that performance of anticipated model is superior in contrary to other models. Simulation has been done with MATLAB environment. Metrics like accuracy, sensitivity, specificity, F-measure and recall has been evaluated


Author(s):  
Ananth Sridharan ◽  
Bharath Govindarajan

This paper presents an approach to reframe the sizing problem for vertical-lift unmanned aerial vehicles (UAVs) as an optimization problem and obtains a weight-optimal solution with up to two orders of magnitude of savings in wall clock time. Because sizing is performed with higher fidelity models and design variables from several disciplines, the Simultaneous Analysis aNd Design (SAND) approach from fixed-wing multidisciplinary optimization literature is adapted for the UAV sizing task. Governing equations and disciplinary design variables that are usually self-contained within disciplines (airframe tube sizes, trim variables, and trim equations) are migrated to the sizing optimizer and added as design variables and (in)equality constraints. For sizing consistency, the iterative weight convergence loop is replaced by a coupling variable and associated equality consistency constraint for the sizing optimizer. Cruise airspeed is also added as a design variable and driven by the sizing optimizer. The methodology is demonstrated for sizing a package delivery vehicle (a lift-augment quadrotor biplane tailsitter) with up to 39 design variables and 201 constraints. Gradient-based optimizations were initiated from different starting points; without blade shape design in sizing, all processes converged to the same minimum, indicating that the design space is convex for the chosen bounds, constraints, and objective function. Several optimization schemes were investigated by moving combinations of relevant disciplines (airframe sizing with finite element analysis, vehicle trim, and blade aerodynamic shape design) to the sizing optimizer. The biggest advantage of the SAND strategy is its scope for parallelization, and the inherent ability to drive the design away from regions where disciplinary analyses (e.g., trim) cannot find a solution, obviating the need for ad hoc penalty functions. Even in serial mode, the SAND optimization strategy yields results in the shortest wall clock time compared to all other approaches.


2016 ◽  
Vol 44 (2) ◽  
Author(s):  
Shrikant Baslingappa Swami ◽  
N.J. Thakor A.M. Gawai

<p>The physical properties, viz., geometric diameter, surface area, sphericity, volume, bulk density, true density and angle of repose was measured for  four  cashew varieties <em>viz</em>., <em>Vengurle 1, Vengurle 3, Vengurle 4</em>  and <em>Vengurle 7</em> at different moisture content (15 to 87% db). For <em>Vengurle</em> 1 as the moisture content increased, the physical properties i.e., geometric mean diameter, volume, surface area, true density and angle of repose increased from 20.8 to 22.1 mm, 3485 to 4416 mm<sup>3</sup>, 1355 to 1540 mm<sup>2</sup>, 984 to 1030 kg m<sup>-3</sup> and 32 to 37˚, respectively. The sphericity and bulk density decreased from 74.2 to 71.4 per cent and 490 to 418 kg m<sup>-3</sup> respectively. For <em>Vengurle 3</em> geometric mean diameter, volume, surface area, true density and angle of repose increased from 27.2 to 28.6 mm, 7912 to 9169 mm<sup>3</sup>, 2320 to 2567 mm<sup>2</sup>, 1020 to 1048 kg m<sup>-3</sup> and 33 to 35.5˚, respectively. The sphericity and bulk density decreased from 75.5 to 75.2 per cent and 531 to 470 kg m<sup>-3</sup> respectively. For <em>Vengurle 4</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 21.0 to 24.1mm, 3362 to 5113 mm<sup>3</sup>, 1391 to 1828 mm<sup>2</sup>, 970 to 1030 kg m<sup>-3</sup> and 32.5 to 38˚,  respectively. The sphericity and bulk density decreased from 65.8 to 66.8 per cent, 517 to 462 kg m<sup>-3</sup>, respectively. For <em>Vengurle 7</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 24.2 to 24.9 mm, 5102 to 5547 mm<sup>3</sup>, 1840 to 1941 mm<sup>2</sup>, 998 to 1045 kg m<sup>-3</sup> and 33 to 38˚, respectively. The sphericity and bulk density decreased from 65.4 to 65.8 per cent, 518 to 438 kg m<sup>-3</sup>, respectively.</p>


2017 ◽  
Vol 25 (8) ◽  
pp. 1217-1225 ◽  
Author(s):  
Sonia Iurian ◽  
Elena Dinte ◽  
Cristina Iuga ◽  
Cătălina Bogdan ◽  
Iuliana Spiridon ◽  
...  

Author(s):  
Akin Keskin ◽  
Amit Kumar Dutta ◽  
Dieter Bestle

Aerodynamic design of an axial compressor is a challenging design task requiring a compromise between contradicting requirements like wide operating range, high efficiency, low number of stages and high surge margin. Therefore, the design process is typically subdivided into a sequence of subproblems where the blading design is a key process. According to flow conditions, which result from throughflow calculations on axis-symmetric stream surfaces, 2-dimensional blade profiles have to be designed, which then may be stacked along a radial stacking line in order to find the 3D-blade geometry. The design of the blade sections is rather time consuming due to many iterations with different programs. Usually a geometry generation tool is used to describe the blade sections which are then evaluated by a blade-to-blade CFD solver. The quality of a single blade section is typically characterized by the overall loss at design flow conditions and the working range determined by an amount of loss increase due to incidence variation. The aerodynamic performance of the final airfoils and thus of the whole compressor depends significantly on the design of the individual blade sections. In this investigation an automated multi-objective optimization strategy is developed to find best blade section geometries with respect to loss and working range. The multi-objective optimization approach provides Pareto-optimal compromise solutions at reasonable computational costs outperforming a given Rolls-Royce datum design which has been ‘optimized’ manually by a human design engineer.


2021 ◽  
Vol 7 (2) ◽  
pp. 083-090
Author(s):  
Ubong Edet Assian ◽  
Akindele Folarin Alonge

Kariya kernel is very rich in essential fats, oils and other valuable nutrients which may find applications in many food formulations. To harness these nutrients, processing equipment and machines are to be used. In order to effectively design these machines, the values of some physical properties of kariya nut and kernel are needed. In this study, some physical properties of the kariya nut and kernel were investigated. Results showed that mean major diameter, intermediate diameter, minor diameter and unit mass obtained at the nut moisture content of 19.83 ± 3.71 (w.b.) were 14.16 ± 0.79 mm, 10.17 ± 0.36 mm, 9.78 ± 0.28 mm and 0.503 ± 0.05g, respectively while the corresponding values obtained at the kernel moisture content of 8.89 ± 2.22% (w.b.) were 9.07 ±0.72 mm, 7.32 ±0.49 mm, 7.08 ± 0.41 mm and 0.328 ± 0.03 g, respectively. The values of calculated geometric mean diameter were 11.20 ±mm and 7.77 ± 0.36 mm, for the kariya nut and kernel, respectively. The skewness value of the sample distribution of 0.08 and -0.24 were recorded for the kariya nut and kernel, respectively. The sphericity, surface area, volume, density, bulk density and porosity were 79.27 ± 3.07%, 394.75 23.13 mm2, 738.37 ± 64.96 mm3 , 681.1 ± 20 kg/m3, 440.24 ± 0.04 kg/m3 and 36.65 ± 0.74% ; and 85.97 ± 5.27%, 189.85 ± 17.34 mm2, 246.71 ± 33.60 mm3, 1342.1 ± 136.23 kg/m3, 773.06 ± 0.06 kg/m3 and 42.28 ± 4.10% for the kariya nut and kernel respectively.


Sign in / Sign up

Export Citation Format

Share Document