A MultiDisciplinary Optimization Approach for Sizing Vertical Lift Aircraft

Author(s):  
Ananth Sridharan ◽  
Bharath Govindarajan

This paper presents an approach to reframe the sizing problem for vertical-lift unmanned aerial vehicles (UAVs) as an optimization problem and obtains a weight-optimal solution with up to two orders of magnitude of savings in wall clock time. Because sizing is performed with higher fidelity models and design variables from several disciplines, the Simultaneous Analysis aNd Design (SAND) approach from fixed-wing multidisciplinary optimization literature is adapted for the UAV sizing task. Governing equations and disciplinary design variables that are usually self-contained within disciplines (airframe tube sizes, trim variables, and trim equations) are migrated to the sizing optimizer and added as design variables and (in)equality constraints. For sizing consistency, the iterative weight convergence loop is replaced by a coupling variable and associated equality consistency constraint for the sizing optimizer. Cruise airspeed is also added as a design variable and driven by the sizing optimizer. The methodology is demonstrated for sizing a package delivery vehicle (a lift-augment quadrotor biplane tailsitter) with up to 39 design variables and 201 constraints. Gradient-based optimizations were initiated from different starting points; without blade shape design in sizing, all processes converged to the same minimum, indicating that the design space is convex for the chosen bounds, constraints, and objective function. Several optimization schemes were investigated by moving combinations of relevant disciplines (airframe sizing with finite element analysis, vehicle trim, and blade aerodynamic shape design) to the sizing optimizer. The biggest advantage of the SAND strategy is its scope for parallelization, and the inherent ability to drive the design away from regions where disciplinary analyses (e.g., trim) cannot find a solution, obviating the need for ad hoc penalty functions. Even in serial mode, the SAND optimization strategy yields results in the shortest wall clock time compared to all other approaches.

2014 ◽  
Vol 679 ◽  
pp. 1-5 ◽  
Author(s):  
Sumayah Abdulsalam Mustafa ◽  
Mohd Zulham Affandi bin Mohd Zahid ◽  
Md.Hadli bin Abu Hassan

Cross sectional areas optimization is to be implemented to study the influence of the cross section shape on the optimum truss weight. By the aid of analysis and design engines with advanced finite element analysis that is the steel design software STAAD. Four rolled steel sections (angle, tube, channel, and pipe) which are used in industrial roof trusses are applied for comparison. Many previous studies, use the areas of cross sections as design variables without highlight to the shape of cross section at the start of the process, consequently the result area will be adequate if the designer choose the effective shape than others. Results of this research show that the chosen cross section shape has a significant impact on the optimum truss weight for same geometry of truss type under the same circumstances of loading and supports.


2019 ◽  
Vol 87 ◽  
pp. 01022
Author(s):  
V. Sandeep ◽  
Sharankumar Shastri

This paper deals with analysis and design of permanent magnet brushless dc machine (PMBLDCM), primarily aimed for three wheeler applications. The motor sizing accounts for the forces acting on the motor and the design variables such as number of stator and rotor slots, stator and rotor dimensioning, air-gap approximation, slot sizing, flux per pole and permanent magnet sizing has been explained using simplified equations. The designed motor rated at 1.5 kW, 3000 rpm, 120 V radial flux surface mounted permanent magnet rotor, is then assessed using analytical tools for design such as ANSYS’s RMXprt to verify the analytically obtained results. These results are then verified using the computer aided analysis tool, finite element analysis, using ANSYS Maxwell, to obtain the electromagnetic characteristics of the motor for further modification of design.


2011 ◽  
Vol 473 ◽  
pp. 683-690 ◽  
Author(s):  
Khalil Khalili ◽  
Parviz Kahhal ◽  
Ehsan Eftekhari Shari ◽  
M. Soheil Khalili

The present study aims to determine the optimum blank shape design for the deep drawing of Elliptical-shape cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Present study describes the approach of applying Response Surface Methodology (RSM) with Reduced Basis Technique (RBT) to assist engineers in the blank optimization in sheet metal forming. The primary objective of the method is to reduce the enormous number of design variables required to define the blank shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each blank shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum earing function – is achieved. The experimental design of RSM method is used to build the approximation model and to perform optimization. MATLAB software has been used for building RSM model. Explicit non-linear finite element (FE) Code Abaqus/CAE is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is Stainless steel St12. A quantitative earing function is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. So through the investigation the proposed method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.


2013 ◽  
Vol 302 ◽  
pp. 583-588 ◽  
Author(s):  
Fredy M. Villanueva ◽  
Lin Shu He ◽  
Da Jun Xu

A multidisciplinary design optimization approach of a three stage solid propellant canister-launched launch vehicle is considered. A genetic algorithm (GA) optimization method has been used. The optimized launch vehicle (LV) is capable of delivering a microsatellite of 60 kg. to a low earth orbit (LEO) of 600 km. altitude. The LV design variables and the trajectory profile variables were optimized simultaneously, while a depleted shutdown condition was considered for every stage, avoiding the necessity of a thrust termination device, resulting in reduced gross launch mass of the LV. The results show that the proposed optimization approach was able to find the convergence of the optimal solution with highly acceptable value for conceptual design phase.


Author(s):  
Wei Zhu ◽  
Di Yang ◽  
Jun Huang

The wheel–rail contact relationship has a great impact on the security and reliability of metro vehicles in service. In particular, wear modeling and maintenance optimization of the wheels play significant roles with regard to both safety and cost. However, it is difficult to provide a satisfactory model of wheel wear because of the open nature of real wheel–rail systems and the constantly varying environmental conditions in which they operate. Historically, re-profiling, which also has its limitation to some extent, was adopted as a common strategy to restore the original profiles of the worn wheels. Acknowledging that re-profiling is not the only strategy for dealing with wheel wear, the authors of this study have developed a more advanced optimization approach that includes two more strategies, namely, vehicle turning and multi-template use, to give as near an optimal solution as possible. Vehicle turning refers to the reversal of the vehicle’s orientation on the rail, whereas multi-template use refers to the situation where different re-profiling templates are used alternately. In this paper, re-profiling, vehicle turning, and multi-template use have been discussed separately. Then a hybrid optimization strategy for the maintenance of the wheels of metro vehicles has been proposed, with the aim of maximizing the wheel life while minimizing the relevant costs. An initial case study on the Shanghai Metro system shows that the proposed approach is able to provide a more reasonable solution for the optimization of the maintenance strategies.


2016 ◽  
Vol 13 (10) ◽  
pp. 6906-6915
Author(s):  
Zhuo Zhang ◽  
Fei Yu ◽  
Bo Xu ◽  
Shipeng Du ◽  
Qiuying Wang

The optimization function for designing is usually not smooth or discontinuous due to numerical noises, which makes the multidisciplinary decoupling and optimization design more difficult. An global multidisciplinary optimization approach with consideration of numerical noises is proposed in this paper. First, the decoupling problem is transferred into optimization in line with the idea of Simultaneous Analysis and Design (SAND). Kriging models are introduced as surrogate models in order to filter the numerical noises, then the location of new samples is determined with the method of Maximum Likelihood Estimation (MLE), in order to reduce repetitive times of decoupling analysis. Second, the multidisciplinary optimization model of coupling systems is set up using the penalty function method. Finally, the proposed model and method is verified through a typical thermalelectrical coupling example.


Author(s):  
Philippe De´pince´ ◽  
Se´bastien Rabeau ◽  
Fouad Bennis

The increasing economic competition of all industrial markets and growing complexity of engineering problems lead to a progressive specialization and distribution of expertise, tools and works. On the other hand, engineering products becomes more and more complex and the designer has to face with an increase design variables and design objectives. Besides multi-objective optimization (MOO) and multi-disciplinary design optimization (MDO) are more commonly used as methods to provide optimal solutions for complex design problems. The paper describes an innovative mixing between genetic algorithms (MOGA) and collaborative optimization (CO) as a tool to: 1) increase the convergence rate when a design problem can be broken up regarding design variables, and 2) provide an optimal set of design variables in case of multi-level design problem. This method gives multidisciplinary optimization the advantages AG has brought to multi-objective optimization. The method, tested on test functions, assures high optimization results containing CPU times.


2012 ◽  
Vol 463-464 ◽  
pp. 1601-1604
Author(s):  
Iuliana Piscan ◽  
Nicolae Predincea ◽  
Nicolae Pop

The present study demonstrates the use of optimization technology in improving the bolted joint design. Design exploration from ANSYS Workbench is used in the study. The objective of the study was to minimize the bolted joint deformation in order to optimize the joint. Variations of the parameters such as bolt pretension force, friction coefficient and pressure were studied. The optimization study provided response charts of the different design variables on the output. Sensitivity analysis of the input variables helped in identifying the importance of each design variable and their respective effects on the output. Finally the different design points were rated based on a goal-driven optimization study and the best design is chosen. Single Graphical User Interface allowed quick learning and ease-of-use.


2020 ◽  
Vol 20 (1) ◽  
pp. 22-34
Author(s):  
Guangwei Xiang ◽  
Peng Mi ◽  
Guoqing Yi ◽  
Chao Wang ◽  
Wei Liu

AbstractThe traditional wind tunnel strain balance design cycle is a manual iterative process. With the experience and intuition of the designer, one solution that meets the design requirements can be selected among a small number of design solutions. This paper introduces a novel software integration-based automatic balance design optimization system (ABDOS) and its implementation by integrating professional design knowledge and experience, stepwise optimization strategy, CAD-CAE software, self-developed scripts and tools. The proposed two-step optimization strategy includes the analytical design process (ADP) and the finite element method design process (FEDP). The built-in optimization algorithm drives the design variables change and searches for the optimal structure combination meeting the design objectives. The client-server based network architecture enables local lightweight design input, task management, and result output. The high-performance server combines all design resources to perform all the solution calculations. The development of more than 10 balances that have been completed and a case study show that this method and platform significantly reduce the time for design evaluation and design-analysis-redesign cycles, assisting designers to comprehensively evaluate and improve the performance of the balance.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Lelai Zhou ◽  
Shaoping Bai

This paper describes a new approach to the design of a lightweight robotic arm for service applications. A major design objective is to achieve a lightweight robot with desired kinematic performance and compliance. This is accomplished by an integrated design optimization approach, where robot kinematics, dynamics, drive-train design and strength analysis by means of finite element analysis (FEA) are generally considered. In this approach, kinematic dimensions, structural dimensions, and the motors and the gearboxes are parameterized as design variables. Constraints are formulated on the basis of kinematic performance, dynamic requirements and structural strength limitations, whereas the main objective is to minimize the weight. The design optimization of a five degree-of-freedom (dof) lightweight arm is demonstrated and the robot development for service application is also presented.


Sign in / Sign up

Export Citation Format

Share Document