scholarly journals A simple and reproducible method for production of protein nanoparticles at biological pH using egg white

2019 ◽  
Vol 9 (1) ◽  
pp. 3783-3789

Protein nanoparticles have been found to be of great interest as a carrier in a drug delivery system due to its biodegradability and non toxic nature. The purpose of the present investigation is to establish a simple and fast method for the preparation of stable egg white protein (EWP) nanoparticles. Desolvation process was adopted and the resulting nanoparticles were stabilized by a crosslinker, glutaraldehyde. To get the suitable and stable nanoparticles several process parameters such as pH, agitation speed, concentration of egg white, rate of addition of desolvating agent, gluteraldehyde concentration and addition of salt and buffer were examined. The minimum size of 112nm has been obtained at pH 9.0 when ethanol addition rate was 1ml/min at an agitation speed of 550 rpm. The size of nanoparticles is affected largely by pH of egg white while it is not significantly affected by the agitation speed and concentration of egg white and crosslinker. The SEM monochrome image of eggwhite nanoparticles displays the spherical shape with around 100nm size.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 584
Author(s):  
Shalendra Kumar ◽  
Faheem Ahmed ◽  
Nagih M. Shaalan ◽  
Osama Saber

Bio-inspired synthesis is a novel and attractive environmentally friendly route to generating inorganic materials. In this work, the preparation of CeO2 NPs using egg white and investigation of their antibacterial properties both in liquid and solid growth medium against Escherichia coli and Staphylococcus aureus bacteria were reported. The CeO2 nanoparticles were characterized using X-ray diffraction (XRD), Field emission transmission electron microscope (FETEM), UV-Vis, Raman, and antibacterial measurements. The results from XRD and TEM analysis showed that the prepared nanoparticles were a single phase in the nano regime (5–7 nm) with spherical shape and uniform size distribution. Optical properties reflected the characteristics peaks of CeO2 in the UV-Vis range with a bandgap ~2.80 eV. The antibacterial activity of the synthesized NPs was achieved under ambient conditions with different bacteria and the results showed that the properties were different for both the bacteria. The highest activity with an inhibition zone of about 22 mm against S. aureus was obtained as compared with the 19 mm zone of inhibition obtained with E.coli. This finding will be of major significance that indicates a possibility to develop CeO2 NPs as antibacterial agents against extensive microorganisms to control and prevent the spread and persistence of bacterial infections.


2021 ◽  
pp. 110597
Author(s):  
María Laura Deseta ◽  
Osvaldo E. Sponton ◽  
Melina Erben ◽  
Carlos A. Osella ◽  
Laura N. Frisón ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Nazanin Mansouri Shirazi ◽  
Niloofar Eslahi ◽  
Adeleh Gholipour-Kanani

Keratin protein has been applied for biomedical applications due to its biocompatibility, biodegradability, mechanical resistance, and bioavailability. Tragacanth gum (TG) as a polysaccharide-based biopolymer has wound healing and antimicrobial properties. In this study, keratin was extracted from protein-based chicken feather by using reduction hydrolysis (sodium sulfide), and nanogels of keratin and TG composites at different ratios were produced by using the chemical cross-linking method. Then, cinnamon (5 and 10%) as an antibacterial herbal extract was added to the nanogels and coated on cotton fabric. The morphology and size of the composite nanogels, chemical structure, biological, and antibacterial properties were evaluated. According to DLS results, TGK2:1 (ratio of TG to keratin = 2:1) had the minimum size (80 nm) and PDI (0.1), and therefore, this sample was chosen as the optimum one. FESEM and TEM images showed the semi-spherical shape of the produced nanogels. FTIR spectra revealed the possible hydrogen bonding between the components, and the formation of disulfide bonds after the addition of hydrogen peroxide was confirmed by XPS. After loading cinnamon into the nanogels, an increase in size was observed from 80 nm for free-nanogel to 85 and 105 nm for 5 and 10% extract-loaded nanogels, respectively. Besides, more cinnamon was released from the treated fabrics by increasing time and cinnamon concentration. The antibacterial test exhibited good antibacterial properties against both Gram-positive and Gram-negative bacteria. Finally, MTT assay approved the biocompatibility of the produced nanogels for potential use in medical textiles.


2019 ◽  
Vol 280 ◽  
pp. 65-72 ◽  
Author(s):  
Cuihua Chang ◽  
Thomas G. Meikle ◽  
Yujie Su ◽  
Xuting Wang ◽  
Chaitali Dekiwadia ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7020
Author(s):  
Mohammed Ali Dheyab ◽  
Azlan Abdul Aziz ◽  
Mahmood S. Jameel ◽  
Pegah Moradi Khaniabadi ◽  
Ammar A. Oglat

One of the most widely used modalities of clinical imaging is computed tomography (CT). Recent reports of new contrast agents toward CT imaging have been numerous. The production of gold nanoparticles (AuNPs) as contrast agents for CT is primarily a topic of intense interest. AuNPs have beneficial features for this application, including excellent X-ray attenuation, flexible sizes and shapes, tailorable surface chemistry, excellent biocompatibility and high levels of contrast generating matter. AuNPs with a size of about 18.5 nm and semi-spherical shape were synthesized using a sonochemical method. The attenuation rate of X-rays as measured in Hounsfield units per unit concentration (HU/mg) was measured. Ultrasound treatment for a duration of five min has been shown to produce highly stable AuNPs in different media (AuNPs in water and phosphate-buffered saline (PBS) was −42.1 mV and −39.5 mV, respectively). The CT value (HU = 395) of the AuNPs increased linearly with an increase in the AuNP dosage. The results confirm the use of ultrasonic treatment for the production of metal nanostructures, particularly highly stable non-toxic AuNPs, with good morphology and high-quality crystal structure using an easy and fast method. Synthesized AuNPs have the potential to be used as a CT contrast agent in medical imaging applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 949 ◽  
Author(s):  
Chi Diem Doan ◽  
Supratim Ghosh

Protein nanoparticles have recently found a lot of interests due to their unique physicochemical properties and structure-functionality compared to the conventional proteins. The aim of this research was to synthesize pea protein nanoparticles (PPN) using ethanol-induced desolvation, to determine the changes in secondary structures and the particle stability in an aqueous dispersion. The nanoparticles were prepared by diluting 3.0 wt% pea protein solutions in 1–5 times ethanol at pH 3 and 10 at different temperatures. Higher ratios of ethanol caused greater extent of desolvation and larger sizes of PPN. After homogenization at 5000 psi for 5 min, PPN displayed uniform size distribution with a smaller size and higher zeta potential at pH 10 compared to pH 3. PPN prepared from a preliminary thermal treatment at 95 °C revealed a smaller size than those synthesized at 25 °C. Electron microscopy showed roughly spherical shape and extensively aggregated state of the nanoparticles. Addition of ethanol caused a reduction in β-sheets and an increase in α-helices and random coil structures of the proteins. When PPN were separated from ethanol and re-dispersed in deionized water (pH 7), they were stable over four weeks, although some solubilization of proteins leading to a loss in particle size was observed.


1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


Author(s):  
H.C. Eaton ◽  
B.N. Ranganathan ◽  
T.W. Burwinkle ◽  
R. J. Bayuzick ◽  
J.J. Hren

The shape of the emitter is of cardinal importance to field-ion microscopy. First, the field evaporation process itself is closely related to the initial tip shape. Secondly, the imaging stress, which is near the theoretical strength of the material and intrinsic to the imaging process, cannot be characterized without knowledge of the emitter shape. Finally, the problem of obtaining quantitative geometric information from the micrograph cannot be solved without knowing the shape. Previously published grain-boundary topographies were obtained employing an assumption of a spherical shape (1). The present investigation shows that the true shape deviates as much as 100 Å from sphericity and boundary reconstructions contain considerable error as a result.Our present procedures for obtaining tip shape may be summarized as follows. An empirical projection, D=f(θ), is obtained by digitizing the positions of poles on a field-ion micrograph.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


Sign in / Sign up

Export Citation Format

Share Document