scholarly journals Marker assisted introgression of bacterial blight resistant gene into submergence tolerance rice variety BRRI dhan52

2017 ◽  
Vol 42 (3) ◽  
pp. 403-411 ◽  
Author(s):  
ME Kabir ◽  
KM Iftekharuddaula ◽  
MAI Khan ◽  
MAK Mian ◽  
NA Ivy

BRRI dhan52 is a uniquire submergence tolerant rice variety containing prominant genetic background of BR11, a mega rainfed lowland rice (RLR) variety of Bangladesh, but is susceptible to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo). The variety is considerably popular in the southern part of Bangladesh due to its high yield in flash flood condition and comparatvely medium slender grain. Molecular markers linked to BB resistance genes (Xa genes) and submergence QTL (SUB1) were utilized in a marker-aided selection program to develop elite breeding lines with broad-spectrum resistance to bacterial blight. Sequence tagged site (STS) and simple sequence repeat (SSR) markers were essentially used to detect the genes for BB and submergence as well. In backcross generation, markers closely linked to Xa21 and SUB1 QTL were used to select desirable plants possessing these resistance genes (foreground selection) and microsatellite markers polymorphic between donor and recurrent parent were also used to select plants that have maximum contribution from the recurrent parent genome (background selection). In BC1F1 generation, three best plants consiquently were selected from previously selected ten double heterozygous (Xa21 and SUB1 QTL) plants. The percentage of recipient genome recovery in the best plant 1, 2 and 3 were 78.7%, 75.83% and 75.4%, respectively. Eventually this work illustrates the successful application of marker-assisted breeding for introgression of bacterial blight resistant gene into a rice variety of Bangladesh.Bangladesh J. Agril. Res. 42(3): 403-411, September 2017

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2048
Author(s):  
Priya Lal Biswas ◽  
Ujjal Kumar Nath ◽  
Sharmistha Ghosal ◽  
Gayatri Goswami ◽  
Md. Shalim Uddin ◽  
...  

Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is one of the most important diseases in rice. It results in significantly reduced productivity throughout all rice-growing regions of the world. Four BB resistance genes have been reported; however, introgression of a single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding of effective BB resistance genes (i.e., Xa genes) into background varieties is a potential approach to controlling BB infection. In this study, combinations of four BB resistance genes, Xa4, xa5, xa13, and Xa21, were pyramided into populations. The populations were derived from crossing Ciherang (a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from the F6 generation were identified by scoring the phenotype against three virulent bacterial strains, C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-assisted selection (MAS) of the F5 and F6 generations using gene-specific primers. Of these 265 RILs, 11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding of two or three resistance genes, with the Xa4 resistance gene showing broad spectrum resistance against Xoo races with higher agronomic performance compared to their donor and recipients parents. The developed BB-resistant RILs have high yield potential to be further developed for cultivation or as sources of BB resistance donor material for varietal improvement in other rice lines.


2016 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Tasliah Tasliah ◽  
Ma'sumah Ma'sumah ◽  
Kurniawan R. Trijatmiko ◽  
Joko Prasetiyono

<p>Breeding based on molecular marker has become a routine activity in the current rice research. The development of an early<br />maturity of rice variety with high yield is needed to increase national rice production. This study aimed to determine the pattern<br />of alleles for loci controlling total spikelet number and number of days to heading, as well as agronomic performances of the<br />BC1F1 Code x qTSN4 and Code x qDTH8 populations. The study was conducted at the Indonesian Center for Biotechnology and<br />Genetic Resources Research and Development from January to August 2014. The plant materials used were Code (a national<br />variety with bacterial blight resistance gene [Xa7]), IR64-Nils-qTSN4[YP9] (qTSN4 that contains a locus controlling the number of<br />spikelet), IR64-Nils-qDTH8[YP1] (qDTH8 that contains a locus controlling the number of days to heading), BC1F1 Code x qTSN4,<br />and BC1F1 Code x qDTH8. A total of 250 BC1F1 plants of each crosses were selected using molecular markers of RM20582 for Xa7<br />gene, RM17483 and RM6909 for QTL position of qTSN4, RM5556 and RM6838 for QTL position of qDTH8. Based on molecular<br />analysis, there were 63 BC1F1-qTSN4 lines and 65 BC1F1-qDTH8 lines showing heterozygote alleles for qTSN4 or qDTH8 loci and<br />were homozygote for Xa7 locus (HHA pattern). Five plants from each locus target were backcrossed to the recurrent parent,<br />Code, to obtain BC2F1 seeds. The remaining BC1F1 plants were self-pollinated to obtain BC1F2 seeds. Observations on some<br />agronomic characters demontrated that the BC1F1 plants showed higher yield potential than Code and the flowering time of the<br />BC1F1 progenis were also earlier than Code. These results indicated that the yield potential of Code could be improved by<br />introgression of qTSN4 and qDTH8 loci into the Code genome.</p>


2020 ◽  
Vol 21 (4) ◽  
pp. 1281 ◽  
Author(s):  
Yu-Chia Hsu ◽  
Chih-Hao Chiu ◽  
Ruishen Yap ◽  
Yu-Chien Tseng ◽  
Yong-Pei Wu

Tainung82 (TNG82) is one of the most popular japonica varieties in Taiwan due to its relatively high yield and grain quality, however, TNG82 is susceptible to bacterial blight (BB) disease. The most economical and eco-friendly way to control BB disease in japonica is through the utilization of varieties that are resistant to the disease. In order to improve TNG82’s resistance to BB disease, five bacterial blight resistance genes (Xa4, xa5, Xa7, xa13 and Xa21) were derived from a donor parent, IRBB66 and transferred into TNG82 via marker-assisted backcrossing breeding. Five BB-resistant gene-linked markers were integrated into the backcross breeding program in order to identify individuals possessing the five identified BB-resistant genes (Xa4, xa5, Xa7, xa13 and Xa21). The polymorphic markers between the donor and recurrent parent were used for background selection. Plants having maximum contribution from the recurrent parent genome were selected in each generation and crossed with the recipient parent. Selected BC3F1 plants were selfed in order to generate homozygous BC3F2 plants. Nine pyramided plants, possessing all five BB-resistant genes, were obtained. These individuals displayed a high level of resistance against the BB strain, XF89-b. Different BB gene pyramiding lines were also inoculated against the BB pathogen, resulting in more than three gene pyramided lines that exhibited high levels of resistance. The five identified BB gene pyramided lines exhibited yield levels and other desirable agronomic traits, including grain quality and palatability, consistent with TNG82. Bacterial blight-resistant lines possessing the five identified BB genes exhibited not only higher levels of resistance to the disease, but also greater yield levels and grain quality. Pyramiding multiple genes with potential characteristics into a single genotype through marker-assisted selection can improve the efficiency of generating new crop varieties exhibiting disease resistance, as well as other desirable traits.


2003 ◽  
Vol 38 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Anne Sitarama Prabhu ◽  
Emílio da Maia de Castro ◽  
Leila Garcês de Araújo ◽  
Rodrigo Fascin Berni

The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.


2020 ◽  
Vol 133 (12) ◽  
pp. 3287-3297
Author(s):  
Tianzi Lin ◽  
Cong Zhou ◽  
Gaoming Chen ◽  
Jun Yu ◽  
Wei Wu ◽  
...  

Abstract Key message Heterosis QTLs, including qSS7 and qHD8, with dominance effects were identified through GBS and large-scale phenotyping of CSSLs and hybrid F1 populations in a paddy field. Abstract Heterosis has contributed immensely to agricultural production, but its genetic basis is unclear. We evaluated dominance effects by creating two hybrid populations: a B-homo set with a homozygous background and heterozygous chromosomal segments and a B-heter set with a heterozygous background and homozygous segments. This was achieved by crossing a set of 156 backcrossed-derived chromosome segment substitution lines (CSSLs) with their recurrent parent (9311), the male parent of the first super-high-yield hybrid Liangyoupei9 (LYP9), and with the female parent (PA64s) of the hybrid. The CSSLs were subjected to a genotyping-by-sequencing analysis to develop a genetic map of segments introduced from the PA64s. We evaluated the heterotic effects on eight yield-related traits in the hybrid variety and F1 populations in large-scale field experiments over 2 years. Using a linkage map consisting of high-density SNPs, we identified heterosis-associated genes in LYP9. Five candidate genes contributed to the high yield of LYP9, with qSS7 and qHD8 repeatedly detected in both B-hybrid populations. The heterozygous segments harboring qSS7 and qHD8 showed dominance effects that contributed to the heterosis of yield components in the hybrid rice variety Liangyoupei9.


2020 ◽  
Author(s):  
Aleena D ◽  
Padma V ◽  
Rekha G ◽  
Dilip T ◽  
Punniakotti E ◽  
...  

Abstract To combat the dreaded diseases in rice like bacterial blight and blast, host plant resistance has been advocated as a sustainable method. Through the present study, we have successfully incorporated three major bacterial blight (BB) resistance genes viz., Xa21, xa13 and xa5 into NLR3449, a high yielding, blast resistant, fine-grain type popular rice variety through marker-assisted backcross breeding. Foreground selection was carried out using PCR based, gene-specific markers viz., pTA248 (Xa21), xa13prom (xa13) and xa5FM (xa5) at each generation of backcrossing, while 127 polymorphic SSR markers spanning on 12 chromosomes were used for background selection and backcrossing was limited to two rounds. At BC2F1 generation, a single plant (NLR-87-10) with 89.9% recovery and possessing all the three bacterial blight resistance genes was forwarded to BC2F2 generation. A solitary BC2F2 plant viz., NLR-87-10-106 possessing all the three resistance genes and > 90% genome recovery was identified and advanced through selfing till BC2F4 generation by adopting pedigree method. Three best lines at BC2F4 lines, possessing high level of resistance against bacterial blight and blast and equivalent or superior to NLR 34449 in terms of yield, grain quality and agro-morphological traits have been identified and advanced for multi-location trials.


2020 ◽  
Author(s):  
Andrew C. Read ◽  
Mathilde Hutin ◽  
Matthew J. Moscou ◽  
Fabio C. Rinaldi ◽  
Adam J. Bogdanove

AbstractThe Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pvs. oryzicola and oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription, and is suppressed by variants called truncTALEs common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zfBED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is similar to those of NLR resistance genes Pia and Rxo1 and distinct from that associated with induction of the executor resistance gene Xa23, and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently-tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And, endogenous Xo1 specifically co-immunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector co-immunoprecipitation may be effective for identifying or characterizing other resistance genes.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 967
Author(s):  
Kyaw Swar Oo ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
Gaurav Dhawan ◽  
Priyanka Dwivedi ◽  
...  

Increasing rice production is quintessential to the task of sustaining global food security, as a majority of the global population is dependent on rice as its staple dietary cereal. Among the various constraints affecting rice production, reproductive stage drought stress (RSDS) is a major challenge, due to its direct impact on grain yield. Several quantitative trait loci (QTLs) conferring RSDS tolerance have been identified in rice, and qDTY12.1 is one of the major QTLs reported. We report the successful introgression of qDTY12.1 into Pusa 44, a drought sensitive mega rice variety of the northwestern Indian plains. Marker-assisted backcross breeding (MABB) was adopted to transfer qDTY12.1 into Pusa 44 in three backcrosses followed by four generations of pedigree selection, leading to development of improved near isogenic lines (NILs). Having a recurrent parent genome (RPG) recovery ranging from 94.7–98.7%, the improved NILs performed 6.5 times better than Pusa 44 under RSDS, coupled with high yield under normal irrigated conditions. The MABB program has been modified so as to defer background selection until BC3F4 to accelerate generational advancements. Deploying phenotypic selection alone in the early backcross generations could help in the successful recovery of RPG. In addition, the grain quality could be recovered in the improved NILs, leading to superior selections. Owing to their improved adaptation to drought, the release of improved NILs for regions prone to intermittent drought can help enhance rice productivity and production.


Sign in / Sign up

Export Citation Format

Share Document