scholarly journals Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. Cerris

2014 ◽  
Vol 42 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Neslihan Karavin

In Quercus cerris L. var. cerris, four diameters at breast height (BDH) groups were selected as a surrogate for approximate plant age groups to study the effects of plant and leaf age on leaf dry mass, leaf area and specific leaf area. The forms of fluctuations in specific leaf area (SLA) of all DBH groups were similar during the growth period. The minimum SLA was calculated at the leaves’ mature phase. Leaf area did not differ significantly according to leaf age. Significant differences caused by leaf age were determined in mean leaf dry mass and SLA. No significant differences in mean SLA caused by plant age were found. Leaf area and leaf dry mass significantly varied among DBH groups. Leaf area was positively correlated with leaf dry mass, and SLA was negatively correlated with leaf dry mass, while there was no significant relationship with leaf area. DOI: http://dx.doi.org/10.3329/bjb.v42i2.18034 Bangladesh J. Bot. 42(2): 301-306, 2013 (December)

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 996B-996 ◽  
Author(s):  
John M. Ruter

Mouse ear disorder on container-grown river birch (Betulanigra L.) is a national problem caused by a deficiency of nickel. Symptomatic plants have leaves which are small, wrinkled, darker green, cupped, and have necrotic margins. Research showed that mouse ear could be cured by applications of nickel sulfate (Ruter, 2004). Further research was needed to determine optimal rates of application for sprays and drenches and to determine if phytotoxicity occurs at high rates. A study was initiated at a nursery in South Georgia on 25 June 2003, using river birch in their second growing season in #15 containers. Plants were selected for uniformity of mouse ear disorder. Treatments included a control, urea (0.24 g·L-1) + surfactant (1.0 mL·L-1), 250, 500, 750, and 1000 mg·L-1 nickel sulfate sprays, and substrate drenches applied at 150 and 300 mg of Ni/pot. After 30 days, all plants treated with nickel sulfate had 100% normal growth, except the 150 mg of Ni/pot drench, which had 79% of the canopy showing normal growth. No phytotoxicity was noted. Plants receiving foliar sprays had a 66% to 72% increase in leaf area, a 64% to 68% increase in leaf dry mass, a 31% to 44% increase in stem length, and a 9% to 17% increase in specific leaf area compared to nontreated plants. Drench treatments increased leaf area up to 62%, leaf dry mass to 55% and stem length up to 29% over control plants. Nickel in the foliage of nontreated plants was 2.3 mg·kg-1. For the spray treatments, foliar Ni ranged from 5.5 mg·kg-1 for the 250 mg·L-1 treatment to 9.3 mg·kg-1 for the 1000 mg·L-1 treatment. Though plants at the high rate of drench treatment resumed normal growth, foliar Ni levels were not different from control plants. In general, if plants were treated with Ni, then foliar B, Fe, and Zn decreased.


1999 ◽  
Vol 34 (6) ◽  
pp. 944-952 ◽  
Author(s):  
Moacyr Bernardino Dias-Filho

Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.


2021 ◽  
Vol 45 ◽  
Author(s):  
Elen Silma Oliveira Cruz Ximenes ◽  
Andréa Carvalho da Silva ◽  
Adilson Pacheco de Souza ◽  
Josiane Fernandes Keffer ◽  
Alison Martins dos Anjos ◽  
...  

ABSTRACT Flame retardants are efficient in fighting wildfire; however, their environmental implications, especially regarding the vegetation, need to be clarified. This work aimed at assessing the effects of flame retardant on the initial growth of Schizolobium amazonicum. Treatments consisted in applying different flame retardant concentrations via substrate and leaf: Phos-Chek WD-881® (0, 3.00, 6.00, 8.00 and 10.00 mL L-1), Hold Fire® (0, 7.00, 9.00, 12.00 and 15.00 mL L-1) and water-retaining polymer Nutrigel® used as alternative retardant (0, 0.25, 0.50, 0.75 and 1.00 g L-1). Growth analyses were carried out to assess the effects of these substances (10 repetitions per treatment). The aliquot of 10.00 mL L-1 of Phos-Chek WD881 applied on the leaves led to an increase of 70% in leaf area and 15% in seedling height. The same Phos-Chek concentration favored height increase (32%) and total dry mass accumulation (33%) throughout time. The concentration of 15 mL L-1 of Hold Fire® applied on leaves, compromised 45% the accumulation of dry biomass in the seedling. Initially, 1.00 g L-1 of Nutrigel® applied via substrate led to an increase of 70% in leaf area, 29% in plant height, and 89% in leaf dry mass. Therefore, Phos-Chek applied on leaves favored shoot growth in S. amazonicum. Hold Fire® applied on leaves impaired biomass accumulation in seedlings. Nutrigel® applied on substrate does not cause long-lasting damage to the initial growth of S. amazonicum. The aliquot of 0.50 g L-1 administered via polymer leave had positive effect on seedling shoot.


2003 ◽  
Vol 33 (1) ◽  
pp. 164-170 ◽  
Author(s):  
John D Marshall ◽  
Robert A Monserud

Specific leaf area (SLA), the ratio of projected leaf area to leaf dry mass, is a critical parameter in many forest process models. SLA describes the efficiency with which the leaf captures light relative to the biomass invested in the leaf. It increases from top to bottom of a canopy, but it is unclear why. We sampled stands with low and elevated canopies (young and old stands) to determine whether SLA is related to water potential, as inferred from branch height and length, or shade, as inferred from branch position relative to the rest of the canopy, or both. We studied western white pine (Pinus monticola Dougl. ex D. Don), ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.), and interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) in northern Idaho. SLA decreased with branch height (P < 0.0001) at rates that varied among species (P < 0.0001). Branch length had no influence on SLA (P = 0.85). We detected no differences with canopy elevation (P = 0.90), but the slopes of lines relating SLA to branch height may have differed between the canopy elevation classes (P = 0.039). The results are consistent with predictions based on the hypothesis that SLA decreases as the gravitational component of water potential falls. The lack of a strong shading effect simplifies the estimation of canopy SLA for process models, requiring only species and branch heights.


2008 ◽  
Vol 56 (1) ◽  
pp. 44 ◽  
Author(s):  
Jacqueline R. England ◽  
Peter M. Attiwill

Patterns of leaf growth and nutrient accumulation were investigated in relation to leaf ontogeny in the tree species Eucalyptus regnans F.Muell. Newly emergent leaves were tagged in the field and collected every 14 days for measurement of leaf dimensions and nutrient concentrations over a 113-day period. Patterns of growth in area, length, width and mass of leaves followed sigmoid curves. An exponential rate of growth for all measures was observed up to 56 days after leaf emergence, after which there was little increase. Conversely, specific leaf area (leaf area/leaf mass) decreased from emergence to about Day 56 and then remained relatively constant. Contents of all nutrients (measured on a leaf basis) increased during leaf expansion. Concentrations of N, P and K decreased and Ca concentration increased, but there was no clear trend for Mg concentration with leaf development. In general, the results of the present study verify previously developed ‘idealised curves’ of changes in dry mass and nutrient concentrations with leaf age for eucalypts. Patterns of leaf growth and nutrient accumulation (particularly N) show that leaves had reached full expansion and physiological maturity by ~80–90 days after emergence.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 582-585 ◽  
Author(s):  
Kent E. Cushman ◽  
Rita M. Moraes ◽  
Patrick D. Gerard ◽  
Ebru Bedir ◽  
Bladimiro Silva ◽  
...  

Leaves of American mayapple (Podophyllum peltatum) are being investigated as an alternative and renewable source of podophyllotoxin, a pharmaceutical compound used in the manufacture of several drugs. This study examined long-term performance of mayapple populations subjected to different harvest strategies. A naturally occurring population in shade was subjected to leaf removal treatments of frequency (every year, every 2nd or 3rd year) or timing (early or late season). Plots were 1.0 m2, established during Spring 2001, and treatments were applied from 2001 to 2004. Control plots not previously harvested were also included each year. Plants did not tolerate the severest of leaf removal treatments: early harvest time in combination with annual harvest frequency. Early annual harvests reduced total leaf dry mass and total leaf area in a quadratic manner. Late harvest conducted annually, and early harvest conducted every other year, also reduced leaf dry mass and area but not as much as early annual harvest. Plants harvested every year, early, or early every year produced fewer sexual shoots than other treatment combinations. Contents of α-peltatin, β-peltatin, and total lignans were higher for leaves harvested early than those harvested late during each year of the study, demonstrating that lignan contents were affected by leaf age and not treatment. In conclusion, our results for plants grown in shade show that leaves can be removed late in the growing season every 2nd or 3rd year or early every 3rd year without reducing long-term performance of the population. This is more restrictive than that reported for populations in full sun where plants tolerated late harvests every year.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 988-991 ◽  
Author(s):  
Yoshiaki Kitaya ◽  
Genhua Niu ◽  
Toyoki Kozai ◽  
Maki Ohashi

Lettuce (Lactuca sativa L. cv. Summer-green) plug transplants were grown for 3 weeks under 16 combinations of four levels (100, 150, 200, and 300 μmol·m-2·s-1) of photosynthetic photon flux (PPF), two photoperiods (16 and 24 h), and two levels of CO2 (400 and 800 μmol·mol-1) in growth chambers maintained at an air temperature of 20 ±2 °C. As PPF increased, dry mass (DM), percent DM, and leaf number increased, while ratio of shoot to root dry mass (S/R), ratio of leaf length to leaf width (LL/LW), specific leaf area, and hypocotyl length decreased. At the same PPF, DM was increased by 25% to 100% and 10% to 100% with extended photoperiod and elevated CO2 concentration, respectively. Dry mass, percent DM, and leaf number increased linearly with daily light integral (DLI, the product of PPF and photoperiod), while S/R, specific leaf area, LL/LW and hypocotyl length decreased as DLI increased under each CO2 concentration. Hypocotyl length was influenced by PPF and photoperiod, but not by CO2 concentration. Leaf morphology, which can be reflected by LL/LW, was substantially influenced by PPF at 100 to 200 μmol·m-2·s-1, but not at 200 to 300 μmol·m-2·s-1. At the same DLI, the longer photoperiod promoted growth under the low CO2 concentration, but not under the high CO2 concentration. Longer photoperiod and/or higher CO2 concentration compensated for a low PPF.


2011 ◽  
Vol 57 (No. 9) ◽  
pp. 377-383 ◽  
Author(s):  
V. Bayramzadeh ◽  
P. Attarod ◽  
M.T. Ahmadi ◽  
S. Rezaee Amruabadi ◽  
T. Kubo

The relationships between climatic factors and anatomical characteristics of the vessel elements as well as different foliar traits were investigated in Fagus crenata seedlings originating from different provenances. Fagus crenata samples were prepared from Chichibu Research Forest of Tokyo University. In the present study, vessel number per mm<sup>2</sup>, average vessel diameter, vessel area percentage, vessel element length, percentages of perforation plate types, transpiration rate, stomatal conductance, leaf area, leaf thickness, leaf dry mass per unit leaf area, stomatal density and stomatal pore length were measured. Vessel number per mm<sup>2</sup>, vessel area percentage, stomatal conductance, transpiration rate, leaf thickness and leaf dry mass per unit leaf area showed a significant negative correlation with yearly, winter, spring and autumn precipitation. The majority of the studied characteristics were not related to the mean annual and seasonal temperatures of the original provenances. The results suggest that anatomical characteristics of vessel elements and different foliar traits in Fagus crenata are mainly influenced by the precipitation of the origins.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Lichao Huang ◽  
Ülo Niinemets ◽  
Jianzhong Ma ◽  
Julian Schrader ◽  
Rong Wang ◽  
...  

Leaf area is among the most important leaf functional traits, and it determines leaf temperature and alters light harvesting. The calculation of individual leaf area is the basis of calculating the leaf area index (i.e., the total leaf area per unit ground area) that is directly associated with the ability of plants to intercept light for photosynthesis. It is valuable to provide a fast and reliable approach to measuring leaf area. Here, we examined the validity and calculation accuracy of the Montgomery equation (ME), which describes the area of a leaf as a product of leaf length, width and a specific coefficient referred to as the Montgomery parameter, MP. Using ME, we calculated leaf areas of different age groups of bamboo culms. For most broad-leaved plants, leaf area is proportional to the product of leaf length and width, and MP falls within a range of 1/2 to π/4, depending on leaf shape. However, it is unknown whether there is an intra-specific variation in MP resulting from age structure and whether such a variation can significantly reduce the predictability of ME in calculating leaf area. This is relevant as a population of perennial plants usually composes of different age groups. We used Moso bamboos as model as this species is of ecological and economic importance in southern China, and pure stands can cover six to seven plant age groups. We used five age groups of moso bamboo and sampled 260–380 leaves for each group to test whether ME holds true for each group and all groups combined, whether there are significant differences in MP among different age groups, and whether the differences in MP can lead to large prediction errors for leaf area. We observed that for each age group and all groups combined, there were significant proportional relationships between leaf area and the product of leaf length and width. There were small but significant differences in MP among the five age groups (MP values ranged from 0.6738 to 0.7116 for individual plant ages; MP = 0.6936 for all age groups combined), which can be accounted for by the minor intergroup variation of leaf shape (reflected by the leaf width/length ratio). For all age classes, MP estimated for the pooled data resulted in <4% mean absolute percentage error, indicating that the effect of variation in MP among different age groups was small. We conclude that ME can serve as a useful tool for accurate calculations of leaf area in moso bamboo independent of culm age, which is valuable for estimation of leaf area index as well as evaluating the productivity and carbon sequestration capacity of bamboo forests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing-Qiu Feng ◽  
Feng-Ping Zhang ◽  
Jia-Lin Huang ◽  
Hong Hu ◽  
Shi-Bao Zhang

In flowering plants, inflorescence characteristics influence both seed set and pollen contribution, while inflorescence and peduncle size can be correlated with biomass allocation to reproductive organs. Peduncles also play a role in water and nutrient supply of flowers, and mechanical support. However, it is currently unclear whether inflorescence size is correlated with peduncle size. Here, we tested whether orchids with large diameter peduncles bear more and larger flowers than those with smaller peduncles by analyzing 10 traits of inflorescence, flower, and leaf in 26 species. Peduncle diameters were positively correlated with inflorescence length and total floral area, indicating that species with larger peduncles tended to have larger inflorescences and larger flowers. We also found strongly positive correlation between inflorescence length and leaf area, and between total floral area and total leaf area, which suggested that reproductive organs may be allometrically coordinated with vegetative organs. However, neither flower number nor floral dry mass per unit area were correlated with leaf number or leaf dry mass per unit area, implying that the function between leaf and flower was uncoupled. Our findings provided a new insight for understanding the evolution of orchids, and for horticulturalists interested in improving floral and inflorescence traits in orchids.


Sign in / Sign up

Export Citation Format

Share Document