scholarly journals Does the climate of the origin control anatomical characteristics of the vessel elements as well as different foliar traits in Fagus crenata?

2011 ◽  
Vol 57 (No. 9) ◽  
pp. 377-383 ◽  
Author(s):  
V. Bayramzadeh ◽  
P. Attarod ◽  
M.T. Ahmadi ◽  
S. Rezaee Amruabadi ◽  
T. Kubo

The relationships between climatic factors and anatomical characteristics of the vessel elements as well as different foliar traits were investigated in Fagus crenata seedlings originating from different provenances. Fagus crenata samples were prepared from Chichibu Research Forest of Tokyo University. In the present study, vessel number per mm<sup>2</sup>, average vessel diameter, vessel area percentage, vessel element length, percentages of perforation plate types, transpiration rate, stomatal conductance, leaf area, leaf thickness, leaf dry mass per unit leaf area, stomatal density and stomatal pore length were measured. Vessel number per mm<sup>2</sup>, vessel area percentage, stomatal conductance, transpiration rate, leaf thickness and leaf dry mass per unit leaf area showed a significant negative correlation with yearly, winter, spring and autumn precipitation. The majority of the studied characteristics were not related to the mean annual and seasonal temperatures of the original provenances. The results suggest that anatomical characteristics of vessel elements and different foliar traits in Fagus crenata are mainly influenced by the precipitation of the origins.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 480d-480
Author(s):  
U.R. Palaniswamy ◽  
R.J. McAvoy ◽  
B.B. Bible

Purslane (Portulaca oleraceae L.) seedlings were grown under an instantaneous photosynthetic photon flux (PPF) of 299 or 455 μmol·m–2·s–1 for a daily duration of either 8, 12, 16, or 20 h. Thus plants were exposed to a daily PPF of 8.6, 12.9, 17.2, and 21.5 mol·m–2·d–1 in the low PPF treatment (299 μmol·m–2·s–1) and 13.1, 19.7, 26.2, and 32.8 mol·m–2·d–1 in the high PPF treatment (455 μmol·m–2·s–1). All treatments received a 20-h photoperiod using a PPF of ≈5 μmol·m–2·s–1. At low PPF, purslane grown under 16-h PPF duration produced the highest concentration of total fatty acid (TFA), linoleic acid (LA), and linolenic acid (LNA) per unit leaf dry mass (DM) and leaf area; but at high PPF, the concentration of these compounds was highest under 8- and 12-h PPF duration. Trend analysis indicated that maximum TFA, LA, and LNA concentrations occurred with a PPF of 14.1, 16.9 and 17.2 mol·m–2·d–1 respectively; and protein, chlorophyll, and LNA concentrations in thylakoid membranes were maximized at PPF of 21.8, 19.9, and 16.1 mol·m–2·d–1, respectively. LNA as percent of TFA was unaffected by treatment. DM increased with PPF up to the highest PPF exposure of 32.8 mol·m–2·d–1.


1999 ◽  
Vol 34 (6) ◽  
pp. 944-952 ◽  
Author(s):  
Moacyr Bernardino Dias-Filho

Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.


2021 ◽  
Vol 45 ◽  
Author(s):  
Elen Silma Oliveira Cruz Ximenes ◽  
Andréa Carvalho da Silva ◽  
Adilson Pacheco de Souza ◽  
Josiane Fernandes Keffer ◽  
Alison Martins dos Anjos ◽  
...  

ABSTRACT Flame retardants are efficient in fighting wildfire; however, their environmental implications, especially regarding the vegetation, need to be clarified. This work aimed at assessing the effects of flame retardant on the initial growth of Schizolobium amazonicum. Treatments consisted in applying different flame retardant concentrations via substrate and leaf: Phos-Chek WD-881® (0, 3.00, 6.00, 8.00 and 10.00 mL L-1), Hold Fire® (0, 7.00, 9.00, 12.00 and 15.00 mL L-1) and water-retaining polymer Nutrigel® used as alternative retardant (0, 0.25, 0.50, 0.75 and 1.00 g L-1). Growth analyses were carried out to assess the effects of these substances (10 repetitions per treatment). The aliquot of 10.00 mL L-1 of Phos-Chek WD881 applied on the leaves led to an increase of 70% in leaf area and 15% in seedling height. The same Phos-Chek concentration favored height increase (32%) and total dry mass accumulation (33%) throughout time. The concentration of 15 mL L-1 of Hold Fire® applied on leaves, compromised 45% the accumulation of dry biomass in the seedling. Initially, 1.00 g L-1 of Nutrigel® applied via substrate led to an increase of 70% in leaf area, 29% in plant height, and 89% in leaf dry mass. Therefore, Phos-Chek applied on leaves favored shoot growth in S. amazonicum. Hold Fire® applied on leaves impaired biomass accumulation in seedlings. Nutrigel® applied on substrate does not cause long-lasting damage to the initial growth of S. amazonicum. The aliquot of 0.50 g L-1 administered via polymer leave had positive effect on seedling shoot.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing-Qiu Feng ◽  
Feng-Ping Zhang ◽  
Jia-Lin Huang ◽  
Hong Hu ◽  
Shi-Bao Zhang

In flowering plants, inflorescence characteristics influence both seed set and pollen contribution, while inflorescence and peduncle size can be correlated with biomass allocation to reproductive organs. Peduncles also play a role in water and nutrient supply of flowers, and mechanical support. However, it is currently unclear whether inflorescence size is correlated with peduncle size. Here, we tested whether orchids with large diameter peduncles bear more and larger flowers than those with smaller peduncles by analyzing 10 traits of inflorescence, flower, and leaf in 26 species. Peduncle diameters were positively correlated with inflorescence length and total floral area, indicating that species with larger peduncles tended to have larger inflorescences and larger flowers. We also found strongly positive correlation between inflorescence length and leaf area, and between total floral area and total leaf area, which suggested that reproductive organs may be allometrically coordinated with vegetative organs. However, neither flower number nor floral dry mass per unit area were correlated with leaf number or leaf dry mass per unit area, implying that the function between leaf and flower was uncoupled. Our findings provided a new insight for understanding the evolution of orchids, and for horticulturalists interested in improving floral and inflorescence traits in orchids.


2005 ◽  
Vol 23 (1) ◽  
pp. 17-20 ◽  
Author(s):  
John M. Ruter

Abstract Mouse ear (leaf curl, little leaf, squirrel ear) disorder has been a problem in container-grown river birch (Betula nigra L.) for several decades. The disorder is easy to detect in nurseries as the plants appear stunted due to shortened internodes which give the appearance of a witches-broom. The leaves are small, wrinkled, are often darker green in color, are commonly cupped and have necrotic margins. Plants grown in soil rarely express the disorder. A trial was initiated in June 2003 to determine if a deficiency of nickel was the cause of mouse-ear on river birch. Symptomatic river birch trees (Betula nigra ‘BNMTF’ Dura-Heat™) in their second growing season in #15 containers were selected for uniformity of size and mouse ear. Treatments included a 1) control, 2) 789 ppm Ni sprays, 3) 394 ppm Ni sprays, 4) 0.005 lbs Ni/yd3 as a drench, 5) 26 g/pot triple superphosphate (0–46–0), and 6) 130 g/pot Milorganite. Nickel was applied as nickel sulfate, whereas triple superphosphate and Milorganite contain trace amounts of nickel. At 16 days after treatment, up to 5 cm of new growth was evident on plants sprayed with nickel. Thirty days after treatment shoot length increased up to 60%, leaf area increased 80 to 83%, and leaf dry mass increased 76 to 81% for plants sprayed or drenched with nickel sulfate. Plants treated with triple superphosphate or Milorganite did not resume normal growth. All plants treated with nickel sulfate in 2003 did not show symptoms of mouse ear after initiation of growth in 2004. Based on this research mouse ear disorder of river birch is caused by a deficiency of nickel which can be corrected by foliar or drench applications of nickel sulfate.


2020 ◽  
pp. 1348-1354
Author(s):  
Leonardo Correia Costa ◽  
Arthur Bernardes Cecílio Filho ◽  
Rodolfo Gustavo Teixeira Ribas ◽  
Alexson Filgueiras Dutra ◽  
Antonio Márcio Souza Rocha ◽  
...  

Nitrogen (N) is considered to be the nutrient that most affects plant growth. Understanding this mechanism helps in crop management and planning. This study analyzes the growth of tomato plants (Heinz 9553) for industrial purposes as a function of N doses (0, 60, 120 and 180 kg ha-1). The experiment was carried out from April to August 2015, in Barretos, São Paulo State, Brazil. The experimental design was a randomized blocks, in plots subdivided in time, with three replicates. Growth assays were performed at 14, 28, 42, 56, 70, 84, 96, 112 and 126 days after transplanting (DAT). Fertilization with 180 kg ha-1 N provided greater leaf area, leaf dry mass, shoot dry mass (leaves + stems), fruit dry mass, total dry mass, leaf area index, leaf area ratio and leaf mass ratio at the end of the cycle. The lowest relative growth rate and specific leaf area were verified with 180 kg ha-1. For all N doses, the absolute growth rate was small up to 56 DAT and, subsequently, N doses promoted distinct increases in the index.


2008 ◽  
Vol 27 (11) ◽  
pp. 851-857 ◽  
Author(s):  
E van den Heever ◽  
J Allemann ◽  
JC Pretorius

Tulbaghia is known to have antifungal properties that can be used in the treatment of both human and plant pathogens and is used in traditional medicine in South Africa. Increasing demands for plant material makes it necessary to cultivate this species on a large scale. Unfortunately, cultivation can lead to a reduction in the biological activity of plants making them unsuitable for use. In light of the lack of knowledge regarding the agronomic requirements of this plant, the aim of this study was to determine the effect of several rates and two forms of nitrogenous fertilizer on the yield and biological activity of Tulbaghia violacea. Plants were cultivated in sand while the basic fertilization used was the same as that of garlic (20 kg P ha−1, 75 kg K ha−1), a plant from the same family, containing similar active ingredients. Nitrogen was applied once at the beginning of the trial at rates of 30, 60, 120, and 180 kg ha−1 in the form of either nitrate or ammonium. Vegetative growth was quantified in terms of number of leaves and leaf area as well as root and leaf dry mass, while harvested material was tested for antifungal activity. The results indicated that compared with the untreated control, increasing N-rates in both the nitrate and ammonium forms increased leaf number and leaf area as well as both root and leaf dry mass. However, at a rate above 60 kg ha−1, and especially at 180 kg ha−1, the nitrate form stimulated growth more markedly than the ammonium form, whereas antifungal activity decreased sharply and almost linearly as the application rate was increased. Although growth was not stimulated to the same extent by the ammonium form, it increased the in-vitro antifungal activity at different levels during different times of the growing season. From an ornamental perspective, nitrate is the preferred nitrogenous form but, from a bioactivity perspective, ammonium is recommended.


2020 ◽  
Vol 40 (6) ◽  
pp. 810-821 ◽  
Author(s):  
Ana C Palma ◽  
Klaus Winter ◽  
Jorge Aranda ◽  
James W Dalling ◽  
Alexander W Cheesman ◽  
...  

Abstract Conifers are, for the most part, competitively excluded from tropical rainforests by angiosperms. Where they do occur, conifers often occupy sites that are relatively infertile. To gain insight into the physiological mechanisms by which angiosperms outcompete conifers in more productive sites, we grew seedlings of a tropical conifer (Podocarpus guatemalensis Standley) and an angiosperm pioneer (Ficus insipida Willd.) with and without added nutrients, supplied in the form of a slow-release fertilizer. At the conclusion of the experiment, the dry mass of P. guatemalensis seedlings in fertilized soil was approximately twofold larger than that of seedlings in unfertilized soil; on the other hand, the dry mass of F. insipida seedlings in fertilized soil was ~20-fold larger than seedlings in unfertilized soil. The higher relative growth rate of F. insipida was associated with a larger leaf area ratio and a higher photosynthetic rate per unit leaf area. Higher overall photosynthetic rates in F. insipida were associated with an approximately fivefold larger stomatal conductance than in P. guatemalensis. We surmise that a higher whole-plant hydraulic conductance in the vessel bearing angiosperm F. insipida enabled higher leaf area ratio and higher stomatal conductance per unit leaf area than in the tracheid bearing P. guatemalensis, which enabled F. insipida to capitalize on increased photosynthetic capacity driven by higher nitrogen availability in fertilized soil.


2014 ◽  
Vol 1 ◽  
pp. e003 ◽  
Author(s):  
Pierre-Éric Lauri ◽  
Antoine Marceron ◽  
Frédéric Normand ◽  
Anaëlle Dambreville ◽  
Jean-Luc Regnard

It is generally postulated that at the tree scale a drought-related decrease in hydraulic conductance is balanced by a decrease of leaf area. We hypothesized that, at the individual leaf scale, drought affects the allometry between leaf area or mass and hydraulics, leading to a non-linear relationships between these traits. The study was conducted on well-watered and on water-stressed shoots of several apple genotypes covering an extended range of leaf area. Working on dried leaves, we measured leaf lamina area and mass and analyzed their relationships with the maximal xylem hydraulic conductance of the water pathway through the parent shoot and the petiole connected to the leaf lamina. Drought decreased leaf area and mass in absolute values. It also changes the allometric relationships between these two variables: for a same decrease of leaf dry mass the water-stressed shoot had a lower decrease of leaf dry area than the well-watered shoot. Our study also showed that drought affected the stem-to-petiole hydraulics with a higher hydraulic efficiency in the well-watered shoot compared to the water-stressed shoot. We discuss that, compared to the well-watered condition, drought not only decreased leaf size, but also reduced xylem efficiency through the stem-to-petiole pathway with regard to the leaf area and mass supplied.


2019 ◽  
Vol 11 (17) ◽  
pp. 227 ◽  
Author(s):  
L. J. Damasceno ◽  
V. F. A. Silva ◽  
J. N. da Silva ◽  
P. A. Silva ◽  
C. C. Lima ◽  
...  

The reduction in the leaf area is one of the causes in the fall in soybean (Glycine max) productivity as it depends on the production of photoassimilates generated by the leaves, so any factor that interferes in its leaf area may affect the production. The attack of defoliating insects is among such factors. They cause a marked drop in grain yield due to its direct action, therefore, reducing the leaf area, consequently reducing the photosynthetic rate of the plant. The agronomic characteristics of the cultivars may interfere on the level of tolerance of the plant to this type of stress. The objective of this study was to evaluate the influence of defoliation levels on the vegetative and reproductive stages on the development and yield of grains in soybean cultivars. The experimental design was in randomized blocks, in a 2&times;11&times;2 factorial scheme, with four replicates. Factors consisted of defoliation stage (vegetative and reproductive), treatment levels (T1-control plant and ten treatments of artificial defoliation) and soybean cultivars (BRS 9090 RR and BRS 8890 RR). The following variables were evaluated: grain yield, dry mass of the pod, leaf dry mass, stem and root dry mass, plant height, stem diameter, number of leaves per plant, length and width of roots. It was observed that the defoliation had a negative effect on the productivity components of the cultivars, with the highest decrease in the reproductive stage, except for the treatment R5, 100% defoliation at the R5 stage, which was also reduced. In relation to the cultivars, the BRS 8890 RR was 27% better in grain yield in relation to BRS 9090 RR.


Sign in / Sign up

Export Citation Format

Share Document