scholarly journals Beta Lactamase Genes of Extended Spectrum Beta Lactamase Producing Escherichia coli from Anorectal Sepsis Cases in Bangladesh

2016 ◽  
Vol 30 (1-2) ◽  
pp. 23-29
Author(s):  
Sheikh Shahidul Islam ◽  
Md Abdul Malek ◽  
AKM Fazlul Haque ◽  
Kaisar Ali Talukder ◽  
Marufa Zerin Akhter

A microbiological study was carried out to determine the prevalence of extended spectrum beta lactamase (ESBL) producing E. coli in anorectal sepsis patients in Bangladesh. One hundred specimens of pus, swab, or exudates from anorectal sepsis cases were studied. All the 61 isolates of E. coli were found to be highly resistant to most of the drugs used. Among these, 14 multidrug resistant E. coli were examined for ESBL production by double disc diffusion method. Six of these were found to be ESBL positive. PCR analysis revealed that 3 of the 6 isolates had coexistence of blaSHV, blaOXA and blaCTXM-1 genes. Two of the isolates had only blaSHV gene, whereas 1 isolate had a combination of blaTEM and blaSHV genes. Three of these were resistant to all the drugs tested, while two were sensitive to getamicin and one to ciprofloxacin. None of the E. coli strains possessed blaCTXM-2, blaCTXM-8, blaCTXM-9, and qnr genes.Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 23-29

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-7
Author(s):  
Eze EM

Background: This study investigated the prevalence of extended spectrum beta-lactamase producing enterobacteriaceae in Illorin metropolis using standard methods. The prevalence of ESBLs is increasingly being reported worldwide, and it varies according to geographic location and is directly linked to the use and misuse of antibiotics extended spectrum lactamases (ESBLs) are a major challenge in hospitalized patients worldwide and cause epidemic outbreaks in health care facilities, spreading in the community leading to various infections. Objectives: Screen for the extended spectrum β-lactamase producing Enterobacteriaceae and also determine the prevalence of ESBL producing Enterobacteriaceae in relation to gender, age and sample source. Methods: One hundred and sixty eight samples collected from routine clinical specimen such as high vagina swabs, urine, urethra swabs and wound swabs and sputum from October to December 2018 were studied. Fifty two enterobacteriaceae were isolated using spread plate method on macConkey and Cystein lactose electrolyte deficient media. The organisms were Klebsiella pneumoniae, Escherichia coli, Salmonella sp, Shigella sp, and Proteus sp. The isolates were subjected to antibiotic susceptibility testing using modified Kirby-Bauer standardized disc diffusion method. The antibiotics used were ceftazidine (30ug), cefuroxime (30ug), gentamicin (10ug), ciprofloxacin (5ug), ofloxacin 5ug, amoxicillin/clavulanate 30ug, nitrofurantoin 30ug and ampicillin 10ug. Ceftazidime showed a susceptibility percentage of 84.6%,, cefuroxime 61.5%, gentamicin 71.2% ciprofloxacin 46.2%, ofloxacin 51.9%, augmentin 61.5%, nitrofurantoin 71.2% and ampicillin, 44.2% with a significant difference (P< 0.05).Extended spectrum beta-lactamase ESBL, production by clinical and laboratory standards institute (CLSI) methods showed that 15(28.9%) of isolates belonging to the genera Escherichia, Klebsiella and Proteus expressed ESBL production. The order of ESBL production by the isolates were Escherichia coli 9 (17.3%), Klebsiella pneumonia 5(9.3%) and Proteus 1(1.9%). Thus, attention needs to be given by health care personnel’s to ESBL producing organisms in order to reduce the spread.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ehssan H. Moglad

One of the global requirements for controlling the occurrence of resistance to antimicrobial drugs is to understanding the resistivity profile of various clinical isolates. Therefore, this study aimed to deliver the indication of different resistant profiles of clinically isolated Enterobacteriaceae from different sources of samples from Khartoum state, Sudan, and to determine the prevalence rate of extended-spectrum beta-lactamase (ESBL), multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria. A total of 144 Gram-negative bacteria were collected from different sources (vaginal swab, urine, catheter tip, sputum, blood, tracheal aspirate, pus, stool, pleural fluid, and throat swab). Samples were subcultured and identified according to their cultural characteristics and biochemical tests. Antimicrobial susceptibility test was performed for twenty-four antibiotics from eleven categories against all isolated Enterobacteriaceae according to the recommendation of Clinical and Laboratory Standards Institute (CLSI). The result showed that out of 144 isolates, Escherichia coli and Klebsiella pneumoniae were predominant isolates with the percentage of 47.9 and 25%, respectively. The prevalence of ESBL was higher in K. pneumonia (38.9%) than E. coli (34.8%). All isolated E. coli were sensitive to nitrofurantoin and tigecycline. There was a high prevalence of MDR Enterobacteriaceae, and only one isolate was XDR, while PDR was zero for all isolated bacteria. Active antimicrobial-resistant (AMR) observation through constant data sharing and management of all stakeholders is crucial to recognize and control the AMR global burden. Also, effective antibiotic stewardship procedures would be applied to limit the unreasonable expenditure of antibiotics in Sudan.


Author(s):  
Wibke Wetzker ◽  
Yvonne Pfeifer ◽  
Solvy Wolke ◽  
Andrea Haselbeck ◽  
Rasmus Leistner ◽  
...  

Background: The monitoring of antimicrobial resistance (AMR) in microorganisms that circulate in the environment is an important topic of scientific research and contributes to the development of action plans to combat the spread of multidrug-resistant (MDR) bacteria. As a synanthropic vector for multiple pathogens and a reservoir for AMR, flies can be used for surveillance. Methods: We collected 163 flies in the inner city of Berlin and examined them for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli genotypically and phenotypically. Results: The prevalence of ESBL-producing E. coli in flies was 12.9%. Almost half (47.6%) of the ESBL-positive samples showed a co-resistance to ciprofloxacin. Resistance to carbapenems or colistin was not detected. The predominant ESBL-type was CTX-M-1, which is associated with wildlife, livestock, and companion animals as a potential major source of transmission of MDR E. coli to flies. Conclusions: This field study confirms the permanent presence of ESBL-producing E. coli in an urban fly population. For continuous monitoring of environmental contamination with multidrug-resistant (MDR) bacteria, flies can be used as indicators without much effort.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Sanjay Mahato ◽  
Ajay Mahato ◽  
Elina Pokharel ◽  
Ankita Tamrakar

Abstract Objective This study was aimed to determine prevalence and resistance pattern like multidrug resistant (MDR) or ESBL nature of E. coli and Klebsiella spp. from various sewage drain samples with an idea to deliver baseline information that could be utilized for defining guidelines for the treatment of hospital sewages. Results Of 10 sewage samples analyzed, 7 (70%) contained E. coli while 6 (60%) contained Klebsiella. Except one sample, all positive samples contained both E. coli and Klebsiella spp. E. coli isolates were resistant to ampicillin, amoxicillin, cefoxitin, cefuroxime, and cefpodoxime; while 85.7% were resistant to amoxicillin/clavulanate, ceftazidime, cefotaxime and ceftriaxone. 71.4%, 57.1%, 42.9%, and 28.6% were resistant to aztreonam, trimethoprim/sulfamethoxazole, nitrofurantoin, and gentamicin. Most were sensitive to chloramphenicol, ofloxacin, ciprofloxacin, and azithromycin. 85.7% and 57.1% of E. coli were MDR and ESBL isolates, respectively. Klebsiella were resistant to ampicillin, amoxicillin, and amoxicillin/clavulanate. 83.4% of Klebsiella were resistant to cefoxitin. 66.7% of strains were resistant to cefuroxime, ceftazidime, cefotaxime, ceftriaxone, and cefpodoxime. Klebsiella showed 50% resistant to aztreonam and trimethoprim/sulfamethoxazole, while 33.3% were resistant to chloramphenicol, nitrofurantoin, ofloxacin, and ciprofloxacin. Klebsiella were sensitive to azithromycin and gentamicin. 66.7% and 33.3% of Klebsiella were MDR and ESBL isolates, respectively.


2014 ◽  
Vol 8 (03) ◽  
pp. 282-288 ◽  
Author(s):  
Hoda Hassan ◽  
Baha Abdalhamid

Introduction: The aim of this study was to determine the prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Proteus mirabilis (P. mirabilis). In addition, different methods for detection of these enzymes, including the newly introduced CHROMagar ESBL, were evaluated. Methodology: A total of 382 Enterobacteriaceae clinical isolates were obtained from King Fahad Specialist Hospital – Dammam, during 2011 and screened for production of ESBL using advanced expert system of Vitek 2, CHROMagar and ESBL-E-strips. PCR assay was used to detect blaTEM, blaSHV, and blaCTX-M genes. Susceptibility to a panel of antibiotics was determined. Results: The overall proportion of ESBL-producing enterobacterial isolates was 30.6%, which was higher in E. coli (35.8%) than in K. pneumoniae (25.7%). ESBL genotypes showed remarkable increase in the CTX-M (97.4%) compared to SHV (23.1%). The predominant ESBL was CTX-M- 15 (92.1 %). No TEM ESBL was detected in this study. The Vitek2 showed the highest sensitivity (100%), and the CHROMagar had the lowest specificity (97.3%) compared to the molecular method. All isolates were susceptible to imipenem and meropenem. Conclusions: This study confirms a high level of blaCTX-M positive ESBL isolates are circulating in the Eastern Province of Saudi Arabia. The trend of a multidrug-resistant profile associated with the recovery of the blaCTX-M gene is alarming.


Author(s):  
S. C. Tama ◽  
Y. B. Ngwai ◽  
I. H. Nkene ◽  
R. H. Abimiku

Objectives: The present study reports extended-spectrum beta-lactamase (ESBL) production in E. coli isolates from poultry droppings from selected poultry farms in Keffi, Nigeria. Methods: Seventy-five (75) samples of poultry droppings were collected, and E. coli was isolated using standard microbiological methods. Antibiotic susceptibility testing and minimum inhibitory concentrations were evaluated as described by the Clinical and Laboratory Standards Institute (CLSI). Phenotypic confirmation of ESBL production by the isolates was carried out using double disc synergy test.  Molecular detection of ESBL genes was carried out using Polymerase Chain Reaction (PCR) method. Results: All (100%) samples had E. coli. Antimicrobial resistance in the isolates were as follows: imipenem (12.0%), gentamicin (20.0%), cefoxitin (37.3%), cefotaxime (41.3%), ceftazidime (44.0%), ciprofloxacin (48.0%), amoxicillin/clavulanic acid (58.7%), streptomycin (92.0%),  sulphamethoxazole/trimethoprim (92.0%) and ampicillin (98.7%). Joint resistance to ampicillin, sulphamethoxazole/trimethoprim-streptomycin was the commonest resistance phenotype at 10.6%. Multiple antibiotic resistance (MAR) was observed in 97.3% (73/75) of the isolates; and the most common MAR indices were 0.7 (21.9%), 0.5 (17.8%), 0.4 (16.4%), 0.8 (11.1%) and 0.3 (10.9%). Twenty three (46.9%) of the 49 cefotaxime/ceftazidime isolates were confirmed ESBL producers. Twenty-two of the 23 ESBL positive isolates (95.7%) carried the bla genes as follows: 95.5% (21/22) for blaSHV; 68.2% (15/22) for blaTEM; and 50.0% (11/22) for blaCTX-M. Eleven (50%) of the 22 isolates carried two bla genes (blaSHV and blaCTX-M, blaTEM and blaCTX-M and blaTEM and blaSHV). Conclusion: The E. coli isolates were less resistant to imipenem, gentamicin and cefoxitin; most isolates were MAR, with resistance to 7 antibiotics being the most predominant. In addition, the blaSHV gene was the most common ESBL gene detected in confirmed ESBL-producing E. coli isolates.


Sign in / Sign up

Export Citation Format

Share Document