scholarly journals IMPORTANT VECTOR-BORNE DISEASES WITH THEIR ZOONOTIC POTENTIAL: PRESENT SITUATION AND FUTURE PERSPECTIVE

2016 ◽  
Vol 13 (2) ◽  
pp. 1-14
Author(s):  
MAHNA Khan

Vector-borne diseases (VBDs) of zoonotic importance are the global threat in the human life and on animal welfare as well. Many vector-borne pathogens (VBPs) have appeared in new regions in the past two decades, while many endemic diseases have increased in incidence. Although introductions and emergence of endemic pathogens are often considered to be distinct processes, many endemic pathogens are actually spreading at a local scale coincident with habitat change. Key differences between dynamics and diseases burden result from increased pathogen transmission following habitat change, deforestation and introduction life into new regions. Local emergence of VBPs are commonly driven by changing in ecology (deforestation, massive natural calamities, civil wares etc.), altered human behavior, enhanced enzootic cycles, pathogen invasion from anthropogenic trade and travel, genomic changes of pathogens to coup up with the new hosts, vectors, and climatic conditions and adaptability in wildlife reservoirs. Once a pathogen is established, ecological factors related to vector and host characteristics can shape the evolutionary selective pressure and result in increased use of people as transmission hosts. West Nile virus (WNV), Nipah virus and Chikungunya virus (CHIKV) are among the best-understood zoonotic vector-borne pathogens (VBPs) to have emerged in the last two decades and showed just how explosive epidemics can be in new regions. Zoonotic VBPs that are likely introduced into new regions include Rift Valley Fever and Japanese Encephalitis viruses (JEV) in the Americas, Venezuelan equine encephalitis virus in Eurasia or Africa, Crimean-Congo Hemorrhagic Fever virus (CCHFV) in new parts of Eurasia. Vector-borne diseases currently impose global burden on public health and animal welfare including widespread formerly zoonotic human diseases, such as malaria, leishmania and dengue fever, as well as zoonotic diseases for which humans are dead end hosts, such as Lyme disease, WNV and CCHF. It requires highly equipped laboratory facilities and technical manpower to address emergence and re-emergence of vector-borne zoonotic diseases. Financial and technological hurdles persist in developing countries, making diagnosis and control facility difficult where these diseases are stubbornly most prevalent. Development of technological and highly knowledgeable manpower is the key to protect public health and eco-health. An awareness building about the changing risk of VBPs to prevent introduction foreign pathogens is far more difficult because this is commonly an inevitable consequence of the globalization of trade and travel and in most cases is accidental. Designing of active surveillance of the deadly infectious pathogens by combining the expertise of veterinary and human health could play pivotal roles towards reducing burden of VBPs. History suggests that successful control of VBPs requires prompt identification, swift action, mobilization of fund for developing technical expertise and occasionally by using draconian social measures.DOI: http://dx.doi.org/10.3329/bjvm.v13i2.26614Bangl. J. Vet. Med. (2015). 13 (2): 1-14

Author(s):  
Dieudonne Moubamba Mbina ◽  
G. D. Maganga ◽  
A. Ndoutoume Ndong

The cross-border trade cattle, involve the movement of several thousands of animals with the risk of introduction of zoonotic diseases and vector borne-diseases between the countries. It was during a trade transaction that a kuri beef (Bos Taurus) coming from the lake chad area in order to cover the needs in meat of the populations of Gabon has introduced Hyalomma impeltatum an anthropophilic tick. The risk of introduction in Gabon of pathogens such as the arbovirus Sindbis and Dhori; the virus of Crimea-Congo hemorrhagic fever, Rickettsia africae as well as Rickettsia aeschilmannii is a real threat for public health. The treatment of cattle with effective acaricides at the frontier before entering to Gabon can prevent the introduction of ticks and tick borne diseases.


Author(s):  
Sherifa Mostafa M. Sabra ◽  
Samar Ahamed

The search conducted on "The impact of global warming (GW) on the public health (PH) increasing the bacterial causing infectious diseases (IDs) performed by experiment: Vector-borne diseases (VBDs) insects, Taif, KSA", the experiment used ants (Taif Tapinoma sessile), prepared, arranged appropriate nests and adjusted the temperature at (20, 25, 30, 35, 40 and 45°C), for a week of each zone. It revealed the behaviour as (normal, semi-normal and ab-normal), the mean of mortality rates were between (0-53.3%). The bacterial contents measured by the turbidity indicated the presence of multiplication, were between (0.109-0.328). The bacterial growth degrees by sings were between (+ - +++++) and percent between (12-100%). Colony Forming Unit/ml (CFU/ml) confined between (1.8X102-15.0X102)/mL. Through this experiment it turned out the GW had a significant role on the PH, helped the proliferation of bacterial pathogens that caused IDS. The conclusion wiped from the experiment that the extent degrees of GW disadvantages on the PH. The PH workers must take the "Preventive Health Prophylaxis Measures" (PHPMs) to protect the individuals from IDs by eliminating the VBDs of various types, monitoring the immunological situation of individuals, provided the vaccinations of IDs and preparing for complete PHPMs against any changes in the PH.


2022 ◽  
Vol 19 (2) ◽  
pp. 025601
Author(s):  
Alessandra R Lima ◽  
Lucas D Dias ◽  
Matheus Garbuio ◽  
Natalia M Inada ◽  
Vanderlei S Bagnato

Abstract The control of pests and vector-borne diseases (VDBs) are considered public health issues Worldwide. Among the control techniques and pesticides used so far, photodynamic inactivation (PDI) has been shown as an eco-friendly, low cost, and efficient approach to eliminate pests and VDBs. PDI is characterized using a photosensitizing molecule, light and molecular oxygen (O2) resulting in production of reactive oxidative species which can promote the oxidation of biomolecules on pests and vectors. Herein, we review the past 51 years (1970–2021) regarding the use of photo pesticides, reporting the most important parameters for the protocol applied, the results obtained, and limitations. Moreover, we described the mechanism of action of the PDI, main classes of photopesticides used so far as well as the cell death mechanism resulting from the photodynamic action.


Author(s):  
John M. Drake ◽  
Michael B. Bonsall ◽  
Michael R. Strand

This book concerns the population biology of vector-borne diseases. Vector-borne diseases of people are a perennial challenge for public health. Although recent decades have enjoyed major declines in the incidence of diseases like malaria and onchocerciasis (river blindness), vector-borne diseases continue to claim the lives of more than 700,000 people per year and exact costs of tens of billions of dollars in expenses for control and through lost productivity (...


Author(s):  
Sekovska Blagica ◽  
Stefanovska Jovana

Change in environmental and socio-economic, emerging zoonotic diseases will be an increasing challenge for public health in Europe and in Macedonia also. The risks and consequences triggered by vector-borne diseases (VBD) for public health in Macedonia are just starting to emerge in public awareness. This is clearly shown by recent events such as spread of hemorrhagic fevers in Europe. The term “public health” in the scope of this chapter suggests re-conceptualization of public health by adapting the risk governance framework developed by the International Risk Governance Council (IRGC) for this purpose. The IRGC approach is distinguished from more classical risk governance approaches, inter alia, by an explicit inclusion of a systematic concern assessment. However, unfortunately, not all countries are adapted on this innovative public health model. This chapter shows results of a risk management study based on interview in depth with the officials regard public health risk, in frame of one health concept in the Republic of Macedonia.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Oscar Daniel Salomón ◽  
María Gabriela Quintana ◽  
Andrea Verónica Mastrángelo ◽  
María Soledad Fernández

Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130552 ◽  
Author(s):  
Diarmid Campbell-Lendrum ◽  
Lucien Manga ◽  
Magaran Bagayoko ◽  
Johannes Sommerfeld

Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups.


2018 ◽  
Author(s):  
Mabel L. Taracena ◽  
Vanessa Bottino-Rojas ◽  
Octavio A.C. Talyuli ◽  
Ana Beatriz Walter-Nuno ◽  
José Henrique M. Oliveira ◽  
...  

AbstractAedes aegypti is the vector of some of the most important vector-borne diseases like Dengue, Chikungunya, Zika and Yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in ROS production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.


2017 ◽  
Author(s):  
Michelle V. Evans ◽  
Courtney C. Murdock ◽  
John M. Drake

AbstractNew vector-borne diseases have emerged on multiple occasions over the last several decades, raising fears that they may become established within the United States. Here, we provide a watchlist of flaviviruses with high potential to emerge in the US, identified using new statistical techniques for mining the associations in partially observed data, to allow the public health community to better target surveillance.


Sign in / Sign up

Export Citation Format

Share Document