scholarly journals Genetic Diversity of Bacterial Blight Resistant Rice (Oryza sativa L.) Genotypes from INGER

2020 ◽  
Vol 23 (2) ◽  
pp. 59-64
Author(s):  
F Akter ◽  
MZ Islam ◽  
A Akter ◽  
SK Debsharma ◽  
A Shama ◽  
...  

Genetic diversity of 65 rice genotypes was studied from IRBBN (International Rice Bacterial Blight Nursery) of INGER (International Network for Genetic Evaluation of Rice) materials through Mahalanobis D2 statistic for grain yield and yield contributing characters. The genotypes were grouped into five clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the genotypes of different clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. The cluster III contained the highest number of genotypes (23) and the clusterv contained the lowest (8). The highest intra-cluster distance was noticed for the cluster I and lowest for cluster III. The highest inter-cluster distance was observed between cluster I and V, followed by cluster IV and V, cluster II andV and the lowest between cluster I and IV. Regarding inter-cluster distance, the genotypes of cluster V showed high genetic distance from all other clusters. The genotypes from cluster V could be hybridized with the genotypes of other clusters for producing transgressive segregants. Based on canonical vector analysis, panicle number per plant had maximum contribution towards genetic divergence. The highest cluster means for yield, grain/panicle and spikelet fertility were obtained from cluster V. The highest means for 1000 grain weight, second higher yield and the lowest growth duration were found in cluster II, while the lowest mean value for yield and 1000 grain weight and higher mean value for growth duration were found in cluster IV. The crosses between the genotypes/parents of cluster V and cluster II, cluster V and cluster I would exhibit high heterosis as well as higher level of yield potential. Therefore, more emphasis should be given for selection of the genotypes from clusters II and V for future breeding programme. Bangladesh Rice j. 2019, 23(2): 59-64

2014 ◽  
Vol 12 (1) ◽  
pp. 26-32 ◽  
Author(s):  
MZ Islam ◽  
MA Siddique ◽  
ESMH Rashid ◽  
MS Ahmed ◽  
M Khalequzzaman

Genetic diversity of 40 traditional Bangladeshi rice genotypes was studied under rainfed condition through Mahalanobis D2 statistic for grain yield and yield contributing characters. The genotypes were grouped into six clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the genotypes of different clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. The cluster VI contained the highest number of genotypes (18) and the clusters I and II contained the lowest (1). The highest intra-cluster distance was noticed for the cluster IV and lowest for cluster VI. The highest inter-cluster distance was observed between cluster I and IV, followed by cluster I and II, cluster I and III and the lowest between cluster III and IV. Regarding inter-cluster distance, the genotypes of cluster IV showed high genetic distance from all other clusters. The genotypes from cluster IV could be hybridized with the genotypes of other clusters for producing transgressive segregants. Based on canonical vector analysis, panicle number per plant and 1000 grain weight had maximum contribution towards genetic divergence. The highest cluster means for yield, filled grains panicle-1 and grain breadth were obtained from cluster VI. The highest means for plant height, flag leaf area, unfilled grains panicle-1, harvest index and the lowest growth duration were found in cluster I, while the lowest mean value for yield, grain length, 1000 grain weight, plant height and highest mean value for days to flowering and maturity were found in cluster II. The crosses between the genotypes/parents of cluster VI and cluster II, cluster VI and cluster V would exhibit high heterosis as well as higher level of yield potential. Therefore, more emphasis should be given for selection of the genotypes from clusters I, VI and V for future breeding program.  DOI: http://dx.doi.org/10.3329/agric.v12i1.19576The Agriculturists 2014; 12(1) 26-32


2013 ◽  
Vol 26 (1) ◽  
pp. 19-24 ◽  
Author(s):  
M. A. Siddique ◽  
M. Khalequzzaman ◽  
M. Z. Islam ◽  
M. S. Ahamed ◽  
E. S. M. H. Rashid

Genetic diversity in 40 traditional boro rice genotypes was studied under irrigated condition through Mahalanobis D2 statistic for grain yield and yield contributing characters. The genotypes were grouped into five clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. The cluster IV contained the highest number of genotypes (22) and the cluster II and V contained the lowest (1). The highest intra-cluster distance was noticed for the cluster III and lowest for cluster II and V. The highest inter-cluster distance was observed between cluster II and III followed by cluster II and V, cluster I and II and the lowest between cluster I and IV. Regarding inter-cluster distance, the genotypes of cluster II   showed high genetic distance from all other clusters. The genotypes from cluster II could be hybridized with the genotypes of other clusters for producing transgressive segregants. Based on positive value of vector 1 and vector 2, panicle/hill had maximum contribution towards genetic divergence. The highest cluster means for yield, flag leaf length and grain length breadth ratio were obtained from cluster IV. The highest 1000-grain weight, shortest growth duration and grain breadth were found in cluster II while the lowest mean value for yield, flag leaf length, filled grains and 1000 grain weight were found in cluster V.  Therefore, more emphasis should be given on cluster II, III and cluster IV for selecting genotypes as parents for crossing with the genotypes of cluster V which would be used to produce new recombinants with desired traits.DOI: http://dx.doi.org/10.3329/bjpbg.v26i1.19980


2012 ◽  
Vol 25 (1) ◽  
pp. 31-39
Author(s):  
S. P. Chakma ◽  
H. Huq ◽  
F. Mahmud ◽  
A. Husna

The experiment was conducted under the agro-ecological zone of Modhupur Tract (AEZ-28) to determine the genetic diversity among 39 rice genotypes, collected from Bangladesh Rice Research Institute, Lal Teer Seed Ltd. and Chittagong Hill Tracts. The genotypes were grouped into six clusters based on Mahalanobis’s D2 statistics and Canonical Variate Analysis. Cluster I consisted with the highest number of (11) genotypes from different origin, whereas cluster IV consisted with the lowest number of (3) genotypes. Cluster III consisted of BRRI dhan 28, BRRI dhan 45, Gold, Tia, Dowel and Moyna showed maximum mean yield. Maximum inter cluster distance was recorded between cluster II and cluster III. The highest inter genotypic distance was observed between Tharak dhan and BRRI dhan 45. Cluster III had the highest mean values for grain yield, harvest index, 1000-grain weight and number of effective tillers per hill and cluster V for number of primary branches per panicle and cluster VI for number of filled grains per panicle that had significant positive correlation with grain yield. Number of unfilled grains per panicle, 1000-grain weight and grain yield showed maximum contribution towards genetic divergence. The genotypes from these clusters with desirable characters may be used as potential donor for future hybridization program to develop high yielders.DOI: http://dx.doi.org/10.3329/bjpbg.v25i1.17010


2018 ◽  
Vol 21 (1) ◽  
pp. 27-34
Author(s):  
MS Pervin ◽  
T Halder ◽  
M Khalequzzaman ◽  
MA Kader ◽  
TL Aditya ◽  
...  

Drought is a major abiotic constraint for growing rain-fed rice in Bangladesh. A total of 175 rice genotypes were evaluated using field-managed screening protocol to identify reproductive phase drought tolerant genotypes at Bangladesh Rice Research Institute, Gazipur, Bangladesh. Twelve morpho-physiological characters viz, growth duration, plant height, tiller number per plant, panicle number per plant, panicle length, filled grain number per plant, sterility percentage, filled grain weight per plant, 1000 grain weight (TGW), straw weight per plant, harvest index (HI) and percent yield reduction were recorded. Multivariate analysis was carried out by using software Genstat 5.5 to measure genetic divergence among the rice genotypes. In total 175 genotypes were constellated into ten clusters in which the cluster I exhibited maximum genetic distances from cluster V and the lowest genetic distance was between cluster II and X. Inter-cluster distances were higher than the intra-cluster distances suggesting wider genetic diversity among the genotypes of different clusters and homogeneity among the genotypes within the cluster. Among the 12 studied characters percent yield reduction contributed maximum towards total divergence in the genotypes, which revealed that these parameters contributed more to grain yield under drought stress. The genotypes of cluster I namely Canthi bakla (BRRI Genebank Acc. No. 7279), Nizersail (BRRI Genebank Acc. No. 7281), Hashim (BRRI Genebank Acc. No. 7283), Uricheora (BRRI Genebank Acc. No. 7311), Goura Kajol (BRRI Genebank Acc. No. 7312), Chini Sail (BRRI Genebank Acc. No. 7343), Tall Biruin (BRRI Genebank Acc. No. 7355), Sakkar Khora (BRRI Genebank Acc. No. 7506) and Boaincha Biruim (BRRI Genebank Acc. No. 7573) performed better under drought stress, which could be used in the crossing programme as donor parent for the development of varietyBangladesh Rice j. 2017, 21(1): 27-34


2016 ◽  
Vol 29 (2) ◽  
pp. 33-40 ◽  
Author(s):  
N. Akter ◽  
M. Z. Islam ◽  
M. A. Siddique ◽  
T. Chakrabarty ◽  
M. Khalequzzaman ◽  
...  

Genetic diversity of 45 traditional Bangladeshi boro rice genotypes was studied through Mahalanobis D2 statistics and was grouped into six clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the genotypes of different clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the cluster. The cluster V contained the highest number of genotypes (14) and the cluster I and VI contained the lowest (4) number. The highest intra-cluster distance was noticed for the cluster VI and the lowest for cluster V. The highest inter-cluster distance was observed between cluster I and VI followed by cluster II and VI, cluster I and V and the lowest between cluster II and IV. The genotypes from cluster VI could be selected as parents for hybridization for producing transgressive segregants. The highest cluster means for yield, grains per panicle and grain length-breath ratio were obtained from cluster I; whereas higher yield, grain breath, 1000 grain weight, flag leaf area, shortest growth duration were obtained from cluster V. Therefore, more emphasis should be given on cluster I, cluster V and cluster VI for selecting genotypes as parents to produce new recombinants with desired traits.


2013 ◽  
Vol 37 (4) ◽  
pp. 617-624 ◽  
Author(s):  
MJ Hasan ◽  
Umma Kulsum ◽  
MMH Rahman ◽  
MMH Chowdhury ◽  
AZMKA Chowdhury

Genetic divergence of 40 parental lines comprising 30 restorer and 10 maintainer lines were studied through Mohalanobis's D2 and principal component analysis for eleven characters. Genotypes were grouped into five different clusters. Cluster V comprised maximum number of genotypes (thirteen) followed by cluster I and II. The inter-cluster distance was maximum between clusters I and V (13.495) indicating wide genetic diversity between these two clusters followed by the distance between cluster I and 11 (9.489), cluster IV, and cluster V (8.969) and cluster I and cluster III (8.039). The minimum inter-cluster distance was observed between cluster II and cluster III (3.034) followed by cluster 111 and cluster IV (3.834) and cluster II and cluster V (4.945) indicating that the genotypes of these clusters were genetically close. The intra cluster distance in the entire five clusters was more or less low which indicated that the genotypes within the same cluster were closely related. Among the characters panicle weight contributed most for divergence in the studied parental lines. Difference in cluster means existed for almost all the characters studied. Highest mean value for number of effective tillers (7.8), days to 50% flowering (95.5), panicles/m2 (192.6), panicle weight (2.9), spikelet fertility (84.8), number of grains/panicle (177.8), days to maturity (123.6), and grain yield/plot (1065.5) were observed in cluster I indicated the parental lines fallen in this cluster having the genetic potentiality to contribute better for yield maximization of hybrid rice. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14386 Bangladesh J. Agril. Res. 37(4): 617-624, December 2012


2021 ◽  
Vol 58 (1) ◽  
pp. 1-7
Author(s):  
Vinod Kumar ◽  
Dhirendra Singh

Genetic diversity of 30 basmati rice genotypes was analysed based on nine agro-morphological and six quality traits. The results of the principal component analysis showed that the first six principal components explained 89.16% of the total variation in the experimental material. These 30 basmati genotypes were grouped into six clusters which indicated the presence of sufficient diversity among the tested genotypes. Cluster I and cluster III was found to be the largest comprising of 10 genotypes each followed by cluster II having seven genotypes. The highest average intra-cluster distance was observed in cluster III. Highest inter-cluster distance (D2) was observed between clusters III and VI followed by clusters III and V, III and IV & clusters II and III. Cluster II showed high mean value for grain yield per plant, 1000 grain weight, and grain length. The characters viz., amylose content, grain length after cooking, spikelet per panicle, grain width, grain length and 1000 grain weight contributed maximum towards total genetic divergence, suggest their suitability of selection.


2018 ◽  
Vol 44 (2) ◽  
pp. 117-125
Author(s):  
AMM Golam Adam ◽  
Rasedul Islam ◽  
Hasna Hena Begum

A pot experiment was carried out to evaluate the effect of different concentrations (0, 10, 25, 50 and 100 ppm) of TIBA on yield and biochemical attributes of BRRI dhan-44. Results revealed that number of effective tillers and dry weight of panicle per plant, length of panicle, number of grains per panicle, 1000-grain weight, yield per plant and harvest index increased due to all concentrations of TIBA treatments where, treatments mean varied significantly in majority of cases. The stimulatory effect of TIBA treatments on number of effective tillers and dry weight of panicles per plant, length of panicle, number of grains per panicle and 1000-grain weight resulted significant increase in grain yield per plant. The maximum yield per plant (17.83 g) was obtained from 10 ppm TIBA treatment which was 59.76 % higher over the control. Increases in yield per plant due to 25, 50 and 100 ppm TIBA were 50.53, 47.58 and 28.49%, respectively. Findings of this investigation showed that foliar application of TIBA had beneficial effect on pigment content of leaves at tillering and grain filling stages with a few exceptions. Protein content of leaves was also positively influenced by most of the treatment at tillering stage. Out of five treatments, 10 ppm TIBA produced better results. Asiat. Soc. Bangladesh, Sci. 44(2): 117-125, December 2018


2018 ◽  
Vol 43 (2) ◽  
pp. 253-266
Author(s):  
N Akter ◽  
H Begum ◽  
MZ Islam ◽  
MA Siddique ◽  
M Khalequzzaman

Genetic diversity in 31 traditional Bangladeshi Aus rice genotypes were studied under transplanted condition through Mahalanobis D2 statistic for grain yield and yield contributing characters. The genotypes were grouped into five clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the genotypes of different clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. The cluster II contained the highest number of genotypes (08) and the cluster I and III contained the lowest (05). The highest intra-cluster distance was noticed for the cluster II and the lowest for cluster IV. The highest inter-cluster distance was observed between cluster II and V followed by cluster III and V, cluster I and V and the lowest between cluster I and III. Regarding inter-cluster distance, the genotypes of cluster V showed high genetic distance from all other clusters. The genotypes from cluster V could be hybridized with the genotypes of other characters of other clusters for producing transgressive segregants. The highest cluster means for yield, effective tiller number and grain length, were obtained from cluster I; whereas the lowest mean value for yield, culm length, plant height and grain breadth were found in cluster II. Therefore, genotypes under cluster I, cluster II and cluster V might be selected for future breeding program as parents for crossing to produce new recombinants with desired traits.Bangladesh J. Agril. Res. 43(2): 253-266, June 2018


1970 ◽  
Vol 23 (2) ◽  
pp. 41-46 ◽  
Author(s):  
MA Siddique ◽  
ESMH Rashid ◽  
M Khalequzzaman ◽  
MZ Islam ◽  
MS Ahmed ◽  
...  

Genetic diversity of 58 traditional local rice genotypes was studied under rainfed condition through Mahalanobis D2 statistic for grain yield and yield contributing characters. The genotypes were grouped into nine clusters. The inter-cluster distances were higher than intra-cluster distances indicating wider genetic diversity among the genotypes of different clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. The cluster III contained the highest number of genotypes (13) and the cluster I contained the lowest (2). The highest intra-cluster distance was noticed for the cluster I and the lowest for cluster VII. The highest inter-cluster distance was observed between cluster I and IV followed by cluster IX and IV, cluster I and VI and the lowest between cluster V and III. Regarding inter-cluster distance, the genotypes of cluster IV showed high genetic distance from all other clusters. The genotypes from cluster IV could be hybridized with the genotypes of other characters of other clusters for producing transgressive segregants. Based on positive value of vector 1 and vector 2, flag leaf length, plant height, panicle length and grain breath had maximum contribution towards genetic divergence. The highest cluster means for yield, 1000 grain weight and grain breath were obtained from cluster VIII. The highest plant height, flag leaf width and panicle length were found in cluster II while the lowest mean value for yield, days to flowering and maturity, unfilled grain and the highest mean value for grain length breadth ratio were found in cluster II. Therefore, more emphasis should be given on cluster IV and cluster VIII, cluster I and cluster IV for selecting genotypes as parents for crossing with the genotypes of cluster II which would be used to produce new recombinants with desired traits.   Key words: Genetic diversity; D2 analysis; cluster analysis; rice (Oryza sativa L)DOI: http://dx.doi.org/10.3329/bjpbg.v23i2.9324 Bangladesh J. Pl. Breed. Genet., 23(2): 41-46, 2010


Sign in / Sign up

Export Citation Format

Share Document