scholarly journals Farmers’ Perception Regarding Climate Change and Crop Production, Especially for Wheat in Dinajpur District

2013 ◽  
Vol 5 (2) ◽  
pp. 129-136 ◽  
Author(s):  
JA Syeda ◽  
M Nasser

An attempt was made to depict the valuable experience of farmers about climate change, environment and agricultural production, particularly wheat by conducting an opinion survey among 50 years and above aged farmers and agricultural workers in selected mauzas of Dinajpur district. Three hundred thirteen (313) respondents were interviewed in the survey. All the respondents opined regarding climate change in Dinajpur district over time. All of them opined that crop land, crop cultivation and crop yield were affected due to climatic change and changing of climate might pose a big and devastating threat to the production of wheat. Besides, the three case studies were accomplished to explore new ideas about climate change and the behavior of nature and human culture. They had also similar types of experience about climate change.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14804 J. Environ. Sci. & Natural Resources, 5(2): 129-136 2012

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Marinos Markou ◽  
Anastasios Michailidis ◽  
Efstratios Loizou ◽  
Stefanos A. Nastis ◽  
Dimitra Lazaridou ◽  
...  

Agriculture is highly dependent on climate change, and Cyprus especially is experiencing its impacts on agricultural production to a greater extent, mainly due to its geographical location. The adaptation of farming to the effects of global climate change may lead to the maximization of agricultural production, which is an important and desirable improvement. The main aim of this paper is to rank and quantify the impacts of climate change on the agricultural sector of Cyprus, through a multi-round Delphi survey seeking a consensus agreement in a group of experts. A multidisciplinary group of 20 experts stated their willingness-to-pay for various impacts of climate change. By applying this method, the individual impacts of climate change on crop production and water resources were brought into the modeling effort on equal footing with cost values. The final cost impact estimate represents the total estimated cost of climate change in the agricultural sector. According to the results, this cost reaches EUR 25.08 million annually for the agricultural sector, and EUR 366.48 million for the whole country. Therefore, it is expected that in the seven-year programming period 2014–2020 the total cost of climate change on agriculture ranges from EUR 176 to EUR 2565 million. The most significant impacts are due to the increasing level of CO2 in the atmosphere and the burden of biodiversity and ecosystems.


2021 ◽  
Vol 51 (8) ◽  
Author(s):  
Uzair Ali ◽  
Wang Jing ◽  
Jialin Zhu ◽  
Zhibek Omarkhanova ◽  
Shah Fahad ◽  
...  

ABSTRACT: The current article looks at the effects of climate change on agriculture, especially crop production, and influence factors of agricultural development in terms of their rational use in Pakistan. Due to the dependence of economic development, and agriculture in the South Asian region on access to renewable national resources and the associated vulnerability to climate change, the limited financial and professional resources of the Islamic Republic of Pakistan require a clear definition of national priorities in this area. In the preparation of this article, general scientific cognition methods, in particular, empirical-theoretical methods were used. Grouping and classification methods have been used to process and systematize the data. The ability to change productivity, depending on the variation of the average annual air temperature and the average annual precipitation rate, was considered using a two-factor regression model. The main finding of the study is that temperature and precipitation have a negative impact on agricultural production. This study can provide a scientific justification for the specialization of agricultural production in the regions of Pakistan as well as the execution of the necessary agricultural activities.


2019 ◽  
pp. 237-250
Author(s):  
Alemu Addisu ◽  
Daniel Olago ◽  
Shem Wandiga ◽  
Silas Oriaso ◽  
Dorothy A. Amwata

Vulnerability to climate change impact is the most pressing issues for less developed countries whose economy mainly depends on the agricultural sector. The demand for food is growing swiftly whereas impacts of climate change on the global food production are increasing. More area specific research outputs and evidences-based policy directions are needed to tackle the ever changing climate and to reduce its impacts on the agricultural production. The aim of this study was to investigate subsistence farmer household’s vulnerability level to climate change impacts and its associations with household’s agricultural production. Then primary data was collected from 400 households from Kolla Temben District, Tigray Regional State, North Ethiopia. Multistage sampling techniques were applied to select households for interview from the district. In the first stage, 4 Kebelles (Kebelle - administration unit) were selected randomly out of 27 Kebelles and then400 households were selected for interview through systematic random sampling techniques (Figure 1). Multiple regressions were used to examine the associations between household’s vulnerability to climate change impacts and agricultural production. Grounded theory and content analysis techniques were use to analyze data from key informant interviews and focus group discussions. For every single unit increase in household vulnerability to climate change impacts, there was an average agricultural production decrease between 16.99 and 25.83 (Table 4). For single unit increase in household’s vulnerability to climate change impact, there was a decrease of total crop production, Total income, total livestock, total food consumption and food consumption per adult equivalent. Rainfall decrease, small farmland ownership, steep topography, frequent flood occurrences and large family size are among the major factors that negatively affect household’s agricultural production and total income. The more the vulnerable the households, the less in total annual crop production, total livestock size, total income from agricultural production and the more dependent on food aid). There is a negative association between household’s vulnerability level to climate change impacts and agricultural production (crop production, total livestock ownerships and total income from crop production). More access to irrigation and agricultural fertilizers, improved varieties of crops, small family size, improve farmland ownership size, more access to education and Agricultural Extension services are an effective areas of intervention to improve household’s resilient, reduce households vulnerability level to climate change impacts and increase household’s total agricultural production.


2012 ◽  
Vol 3 (9) ◽  
pp. 313-321
Author(s):  
Henry De-Graft Acquah

Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables, crop area and crop yield will facilitate development of appropriate policies to cope with climate change. This study therefore examines the effects of climatic variables and crop area on maize yield in Ghana based on regression model using historical data (1970-2010). Linear and Non-linear regression model specifications of the production function were employed in the study. The study found that growing season temperature trend is significantly increasing by 0.03oC yearly whereas growing season rainfall trend is insignificantly increasing by 0.25mm on yearly basis. It was also observed that rainfall is becoming increasingly unpredictable with poor distributions throughout the season. Results from the linear and non-linear regression models suggest that rainfall increase and crop area expansion have a positive and significant influence on mean maize yield. However, temperature increase will adversely affect mean maize yield. In conclusion, the study found that there exists not only a linear but also a non-linear relationship between climatic variables and maize yield.


Afrika Focus ◽  
1990 ◽  
Vol 6 (2) ◽  
pp. 141-155
Author(s):  
Paul Vossen

The interannual variability of traditional, rainfed agricultural production of Botswana, a country with a typical semi-arid climate, is almost completely accounted for by the quality of the rainy season. It appears that the variability of the national cattle death ratio, total planted area and crop yield are, for more than 95% accounted for by rainy season conditions. As a result, also the nutritional state of the population highly correlates with rainfall. Despite the severe droughts of 1978/79and1985/86, farmers were not discouraged to practice agriculture: in fact, crop production shows a significant positive time trend which becomes apparent, when the trend and the rainy season conditions are analysed in combination with each other. As part of this study, models were developed and validated for a precise and areawise agricultural rainy season quality monitoring and for national agricultural production forecasting in Botswana. One of these models could possibly also be used for the areawise assessment of risks for malnutrition of children under five years old.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdinur Ali Mohamed ◽  
Ahmed Ibrahim Nageye

PurposeThe purpose of this study is to measure the effect of land degradation and the environmental changes on agricultural productivity in Somalia, as well as the other factors that affect crop production in Somalia.Design/methodology/approachCobb-Douglas production function assumes crop production as a dependent variable and land degradation, labor, capital, fertilizer and climate change as the explanatory variables. In this study time-series data (1962–2017) collected from the Food and Agriculture Organization and World Development Indicators were used. The unit root of the data was examined using Ng-Perron and the Lee-Strazicich methods to explore the unit root property of the breaks. Structural breaks are observed using the Chow test, and the long-run relationship between the variables is examined using Gregory and Hanssen's approach.FindingsThis study found that land degradation and climate change have a negative relationship with agriculture production in Somalia. Land degradation leads to the decline in agricultural production as the loss of one hectare of land due the depletion causes agriculture production of Somalia to fall by about five percent. Climate changes and warming of the environment lead to the reduction of agriculture production. One degree Celsius rise in the temperature leads to a three percent decline in agricultural production. Capital contributes immensely to agricultural production as one unit of additional capital raises production by seven percent. The contribution of labor to agricultural production is limited because of land contractionPractical implicationsLand degradation is a significant contributor to the decline of agricultural production. As land degradation continues to worsen, rural poverty increases, which in turn causes the rural migration and the social conflict. The government should develop land improvement programs such as increasing market orientation of the farmers, encourage private sector engagement in agribusiness and establish a regulatory framework of the land uses.Originality/valueThis study examines the structure of the time-series and specifies the break periods to determine when and where significant and sudden changes occurred within land degradation and agricultural production. The study employs advanced econometric methods, namely, Ng-Perron method and the Lee-Strazicich method to test the unit root property of the breaks. It also examines the long-run relationship between the variables using Gregory and Hanssen's approach.


2018 ◽  
Author(s):  
Yi Chen ◽  
Zhao Zhang ◽  
Fulu Tao

Abstract. A new temperature goal of holding the increase in global average temperature well below 2℃ above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 ℃ above pre-industrial levels has been established in Paris Agreement, which calls for understanding of climate risk under 1.5 ℃ & 2.0 ℃ warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e., maize, wheat, rice) in China during 2106–2115 at warming scenarios of 1.5 ℃ & 2.0 ℃ using the method of ensemble simulation with well-validated MCWLA family crop models, their 10 sets of optimal crop model parameters, and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and probability of crop yield decrease. Results showed that the decrease of crop growth duration and the increase of extreme events impacts in the future would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the cultivation areas. By contrast, with the moderate increases in temperature, solar radiation, precipitation, and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resource could be ameliorated which enhance canopy photosynthesis, and consequently biomass accumulations and yields. The moderate climate change would slightly deteriorate maize growth environment but result in much more appropriate growth environment for wheat and rice. As a result, the wheat and rice yields could increase by 3.9 % and 4.1 %, respectively, and maize yield could increase by 0.2 %, at a warming scenario of 1.5 ℃. At the warming scenario of 2.0 ℃, wheat and rice yield would increase by 8.6 % and 9.4 %, respectively, but maize yield could decrease by 1.7 %. In general, the warming scenarios would bring more opportunities than risks for the crop development and food security in China. Moreover, although variability of crop yield would increase with the change of climate scenario from 1.5 ℃ warming to 2.0 ℃ warming, the probability of crop yield decrease would decrease. Our findings highlight that the 2.0 ℃ warming scenario would be more suitable for crop production in China, but the expected increase in extreme events impacts should be paid more attention to.


2009 ◽  
Vol 3 (3-4) ◽  
pp. 115-119
Author(s):  
János Lazányi

Pressure on natural resources and the global environment have been identified as the most important challenges to maintain prosperity and improve environmental care. Agriculture is responsible for only a small proportion of carbon dioxide (CO2) emissions, but the sector is more closely associated with emissions of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). The global warming potential of agricultural activities defined as greenhouse gas (GHG) emissions in CO2 equivalents is relatively low in Hungary, when calculated per land area. However this difference decline, when a GHG emission is calculated per product unit, as yields are lower then in West European countries. Environmental load caused by agriculture is also low in Hungary, where increasing part of EU resources are used for the long-term preservation of natural resources and for the raising of awareness of sustainable farming. The strength of the environmental situation of Hungary, consist of several elements, such as the rich bio-diversity, the significant size of territories falling under natural protection, the extent and importance of forests and the low environmental load from crop production. Among the weaknesses the nitrate load of the animal husbandry farms, the increasing water and wind erosion, the soil compaction and degradation have to be taken into consideration. Climate change has high risk potential and the mitigation activities of the New Hungary Rural Development Programme (HRDP) are investigated in this paper with the aim to increase mitigation activities in rural area and reduce the causes of climate change.  


2020 ◽  
Vol 4 (1) ◽  
pp. 28-37
Author(s):  
Prabal Barua ◽  
Syed Hafizur Rahman

Coastal people of Bangladesh have been experiencing from lower crop productivity and fewer cropping intensity because of different climatic vulnerabilities. The research work was carried out in Banskhali upazila of Chattogram district and Teknaf of Cox’s Bazar district to assess the impact of climate change on crop production process and to suggest suitable coping strategies and adaptation options for advancing the coastal agriculture for increased agricultural production. To attain the objectives of the research, the author were collected randomly 240 sampled respondents using pre-tested interview schedule. Long-term data/information on climate change showed that there is a trend of temperature rise and erratic rainfall. Participants stated that the current climate in the study area behaving differently than in the past on a number of climate risk factors like increased temperature, frequent drought, changes in seasonal rainfall pattern, long dry spells, increase of soil salinity, increase of tidal surges affecting crop production. The study showed that the main reasons of yield reduction (20-40 % yield loss) in T. aman crop are erratic rainfall, increased intensity and frequency of drought, salinity, floods, cyclone, use of local varieties, increased incidences of pests & diseases etc in the context of climate change. Average yield level of HYV Boro is being affected (20-40 % yield loss) by high temperature and salinity and that of T.Aus/Aus crop is being affected (20-40 % yield loss) by tidal surge. Vegetables, pulses and oilseed crops are being affected (40-60 % yield loss) by soil wetness, excessive rainfall and water-logging in the selected areas. Sorjan system of cropping, rice-fish dual culture, utilization of bunds as vegetables/spices production in gher areas, floating bed agriculture and homestead gardening with introduction of salt-tolerant & drought tolerant crop varieties have been identified as potential adaptation options for development of coastal agriculture for increased agricultural production in attaining food security.


Sign in / Sign up

Export Citation Format

Share Document