scholarly journals Biodiesel production from linseed oil and performance study of a diesel engine with diesel bio-diesel

1970 ◽  
Vol 39 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Md Nurun Nabi ◽  
SM Najmul Hoque

The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as "the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines." Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88% biodiesel production was experienced with 20% methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.  Keywords: Biodiesel, linseed oil, catalyst, alcohol and diesel emissions. doi:10.3329/jme.v39i1.1832 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 40-44

2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyes Tarabet ◽  
Khaled Loubar ◽  
Mohand Said Lounici ◽  
Samir Hanchi ◽  
Mohand Tazerout

Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.


2018 ◽  
Vol 19 (12) ◽  
pp. 508-513
Author(s):  
Wincenty Lotko ◽  
Krzysztof Górski ◽  
Zygmunt Trela ◽  
Robert Gielniewski ◽  
Jerzy Maksym

The paper is focused on analysis of unrepeatability index of selected combustion parameters in diesel engine fuelled with diesel fuel (DF) blended with ethyl tert-butyl ether (ETBE). Necessary tests were carried out in conditions of free acceleration process of the engine crankshaft without external load. Results showed that ETBE added to DF did not impact significantly on unrepeatability of combustion process in tested engine.


2020 ◽  
Vol 8 (5) ◽  
pp. 3950-3954

Alternative fuel sources are needed to be developed to meet the escalating demand for fossil fuels. Also from an environmental point of view, these most modern resources of fuels must be environment-friendly. The rapidly increasing consumption of fossil fuel and petroleum products has been a matter of concern for many countries which imports more crude oil. So, there is necessary for the development of new energy sources. The biomass, edible oil, inedible oils from plants and fish fat oil are imperatives and seen to be a potential substitute for diesel fuel. Acid and Base catalyzed transesterification is the most acceptable process for biodiesel production. In this project, an attempt towards finding the effect of alternate fuels as a substitute over diesel and reduce its consumption to lessen the environmental effects. Biodiesel has been extensively used in diesel engines as a partial substitute in the past few decades. The present investigation is carried out with blending up fish oil biodiesel with diesel in varying proportions to test out the emission and performance characteristics of direct injection single cylinder, four strokes, and air-cooled diesel engine. The fish oil biodiesel was produced by the transesterification process and obtained fish oil biodiesel blended with diesel fuel with various propagations of B20, B50, B75 & B100. These blended fuels were further investigated in a diesel engine with variable speeds such as 1000rpm, 1250rpm, 1500rpm, 1720rpm, 2000rpm 2250rpm & 2500rpm. In this comparative study, the effects of fish oil biodiesel fuel blends are compared and evaluated with pure diesel.


2021 ◽  
Vol 31 (3) ◽  
pp. 349-363
Author(s):  
Sergey А. Plotnikov ◽  
Anatoly N. Kartashevich ◽  
Marina V. Motovilova

Introduction. The expansion of the fleet of tractors and vehicles causes increased requirements for internal combustion engines. This problem can be solved by improving the work process in a diesel engine that can be achieved by heating the diesel fuel in the fuel supply system. External thermal action is carried out on the high pressure line directly in front of the injectors. Materials and Methods. To analyze and calculate the process of combustion and heat release in a diesel engine with preliminary thermal fuel preparation, bench tests were carried out using the National Instruments software and the necessary equipment. Results. Experimental data of the diesel fuel combustion process in the cylinder of the 4CHN 11.0/12.5 engine are obtained. The analysis of the combustion performance and heat release of diesel with a preliminary high-temperature effect on the fuel was carried out. Indicator diagrams, graphs of heat release, the maximum average temperature of gases in the engine cylinder, and graphs of active and total heat release were constructed. The experimental data showed a decrease in the ignition delay period, the maximum cycle temperature in the engine cylinders, and an acceleration of the start of heat release and combustion process. The values of the parameters of the diesel fuel combustion process are obtained. Discussion and Conclusion. On the basis of the conducted studies, the dependences of the parameters of the combustion process of a diesel engine with fuel heating to high temperatures are revealed. Indicator diagrams allow drawing a conclusion about the influence of the fuel heating temperature on the intensification of the combustion process. There is an acceleration of the beginning of heat release, a decrease in the rate of pressure build-up and in the rigidity of the engine.


2014 ◽  
Vol 541-542 ◽  
pp. 763-768 ◽  
Author(s):  
Jian Wu ◽  
Hong Ming Wang ◽  
Li Li Zhu ◽  
Yang Hua

In this paper, combustion process was simulated on diesel engine with n-butanol/diesel blends in 3000 r/min, 300 Nm using AVL FIRE ESE Diesel. By comparison with indicator diagram, simulation results were consistent with the test results using pure diesel and 5%(volume of n-butanol) n-butanol/diesel blends. Using the calculation model combustion in cylinder is calculated burning B10(mass friction of n-butanol is 10%), B20 and B30 n-butanol /diesel mixture. The results show that the maximum combustion pressure and temperature gradually increases, and accumulated heat of release slightly reduces with the adding of n-butanol. BSFC increases, but indicated efficiency reduces. Mass friction of soot significantly reduce, and mass friction of NOx firstly decreases then increases with the adding of n-butanol. This will provide a basis to the research of n-butanol as substitute fuel.


2015 ◽  
Vol 773-774 ◽  
pp. 491-495 ◽  
Author(s):  
Amir Khalid ◽  
Azmi Abas

Biodiesel is the alternate fuel which is derived from renewable sources either is vegetable oils or animal fats. Biodiesel is non-toxic, have higher biodegradability, free of sulphur, no aromatics and its oxygen content of about 10-11% which is usually not contained in diesel fuel. These characteristics thus predominantly influences to the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas. Purpose of this study is to investigate the effects of fuel additive, oil palm blended fuel, engine speed and test load conditions on the exhaust emissions and engine performance. The engine speed was varied from 1500 to 3000 rpm, load test condition varied by dynapack chassis dynamometer in 0, 50 and 100% and blends of 5(B5), 10(B10) and 15vol%(B15) palm oil with the diesel fuel. Increased of blends ratio with same mixing booster quantity can improve the engine performance, combustion process and give less CO emission. However, this condition tends to produce high NOx production due to higher oxygenated fuel in biodiesel content.


Sign in / Sign up

Export Citation Format

Share Document