scholarly journals Unsteady MHD Flow of a Dusty Visco-elastic Fluid between Parallel Plates with Exponentially Decaying Pressure Gradient in an Inclined Magnetic Field

2016 ◽  
Vol 8 (2) ◽  
pp. 149-157
Author(s):  
D. R. Kuiry ◽  
S. Bahadur

The present paper deals with the unsteady laminar flow of an incompressible, electrically conducting dusty visco-elastic fluid between two parallel stationary plates. The flow is caused by an exponentially decaying pressure gradient .A uniform magnetic field is applied on the lower plate at different inclinations. We observe that the motions of the fluid and dust particles are affected by the variation of some significant physical parameters of the visco-elastic fluid. Mass concentration number, time-relaxation parameter, visco-elastic parameter, intensity of the applied magnetic field and time are some of indispensable physical parameters of fluid flow. The governing equations of motion have been solved by analytical method and the results have been discussed with the help of graphs. The velocity is observed to be symmetrical with the centre of the channel of fluid flow as well as of dust particles. The velocity of the fluid particles and that of the dust particles go on decreasing with an increase in the values of mass concentration number, magnetic field intensity, visco-elastic parameter and time whereas the velocity profiles of fluid and dust particles are observed to be increasing with an increase in the time- relaxation parameter.

2015 ◽  
Vol 70 (8) ◽  
pp. 583-591
Author(s):  
Muhammad Nasir ◽  
Adnan Saeed Butt ◽  
Asif Ali

AbstractA mathematical model has been performed for momentum, temperature, and mass concentration of a time-dependent Casson fluid flow between a long vertical wavy wall and a parallel wavy wall subject to convective boundary conditions. Perturbation technique is used to convert the coupled partial differential equations for velocity, temperature, and mass concentration to systems of ordinary differential equations. Analytical results for these differential equations are computed. The effects of various physical parameters such as thermal conductivity, thermal Grashof number, solutal Grashof number, heat absorption parameter, and Biot number are analysed graphically.


1999 ◽  
Vol 77 (4) ◽  
pp. 279-297 ◽  
Author(s):  
K A Helmy

Exact solutions of an oscillatory flow of an incompressible elasticoviscous conducting fluid with variable suction, in the presence of a constant magnetic field, applied perpendicular to the moving porous plate has been obtained. For small values of the elastic parameter k, the approximate solution of the problem has also been obtained.The temperature distribution is evaluated by solving the energy equation, taking into account the effect of the relaxation time. The effects of different physical parameters such as elastic parameter k, Prandtl number Pr, suction parameterA, magnetic parameter M, and the relaxation time τ on the velocity and temperature are discussed. Different values of physical parameters are tabulated and discussed numerically and graphically. PACS Nos.: 47.50, 47.65, 68.10.E


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 373
Author(s):  
Shahanaz Parvin ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Norihan Md Arifin ◽  
Fadzilah Md Ali

The development of the mathematical modeling of Casson fluid flow and heat and mass transfer is presented in this paper. The model is subjected to the following physical parameters: shrinking parameter, mixed convection, concentration buoyancy ratio parameter, Soret number, and Dufour number. This model is also subjected to the inclined magnetic field and shrinking sheet at a certain angle projected from the y- and x-axes, respectively. The MATLAB bvp4c program is the main mathematical program that was used to obtain the final numerical solutions for the reduced ordinary differential equations (ODEs). These ODEs originate from the governing partial differential equations (PDEs), where the transformation can be achieved by applying similarity transformations. The MATLAB bvp4c program was also implemented to develop stability analysis, where this calculation was executed to recognize the most stable numerical solution. Numerical graphics were made for the skin friction coefficient, local Nusselt number, local Sherwood number, velocity profile, temperature profile, and concentration profile for certain values of the physical parameters. It is found that all the governed parameters affected the variations of the Casson fluid flow, heat transfer, mass transfer, and the profiles of velocity, temperature, and concentration. In addition, a stable solution can be applied to predict the impact of physical parameters on the actual fluid model by using a mathematical fluid model.


2009 ◽  
Vol 1 (2) ◽  
pp. 220-225 ◽  
Author(s):  
P. Sreeharireddy ◽  
A. S. Nagarajan ◽  
M. Sivaiah

In this paper, the flow of a viscous conducting liquid with uniform distribution of dust particles in a channel is considered under the influence of a uniform transverse magnetic field with pressure gradient varying linearly with time. The velocities of fluid and dust are found to decrease with the increase of the magnetic parameter. Further that the velocity of the fluid particles is observed to be more than that of dust particles.Keywords: Viscous conducting liquid; Uniform transverse magnetic field; Fluidization; Incompressible fluid; Stoke’s resistance coefficient. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.2280


2020 ◽  
Vol 17 (1) ◽  
pp. 127-147 ◽  
Author(s):  
R. Meenakumari ◽  
P. Lakshminarayana ◽  
K. Vajravelu

PurposeThe aim of the present paper is to investigate the homogeneous and heterogeneous reactions on Prandtl fluid flow at a stretching sheet with an induced magnetic field and slip boundary conditions.Design/methodology/approachThe governing equations include the continuity, induced magnetic field, momentum, energy and homogeneous–heterogeneous equations. Initially, with suitable similarity variables, the governing partial differential equations and converted into a system of ordinary differential equations. Then, the nonlinear ordinary differential equations are solved by a shooting technique with the help of the BVC5C Matlab package.FindingsThe results of the present investigation are presented through graphs for different values of the various parameters. The authors observed that the large values of the stretching ratio and the induced magnetic parameters are moderate magnetic field, velocity and temperature primarily. Also, the authors found the more velocity and temperatures by boosting the slip parameters.Originality/valueIn addition, the values of the skin friction and the rate of heat transfer for various values of physical parameters are tabulated and deliberated in detail.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985734 ◽  
Author(s):  
Hazem Ali Attia ◽  
Karem Mahmoud Ewis

The coupled unsteady power-law conducting fluid flow and continuous dusty viscous fluid flow under the influence of magnetic field are solved using the finite difference method. The resistive forces of Darcy porous medium and the external uniform magnetic field are applied on the flow. The second-order accurate finite difference schemes are applied on the coupled governing equations to transform the non-linear partial differential equations to linearized system of algebraic equations. This system is solved iteratively using the generalized Thomas algorithm. Some results are introduced to study the convergence and stability of the present works. The effects of non-Newtonian fluid, continuous dusty particles, Darcy model on the velocity field, and friction factor of both the fluid and dust particles phases are demonstrated.


Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document