scholarly journals Quantitative determination of caffeine in different matrices

2016 ◽  
Vol 62 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Nevena Grujić-Letić ◽  
Branislava Rakić ◽  
Emilia Šefer ◽  
Maja Milanović ◽  
Maja Nikšić ◽  
...  

Caffeine is odorless, bitter taste substance which can be naturally found in coffee, cocoa, tea leaves, and is intentionally added in food and pharmaceutical products. It can also be found in surface water in small concentrations where is often used as an excellent indicator of human waste. The aim of the work is determination of caffeine content in food, beverages, analgesics and surface water using solidphase extraction followed by high-performance liquid chromatography (HPLC). Caffeine content was determined in 12 commercial tea and coffee products, non-alcoholic energy drinks and food, 5 combined preparations of analgesics and the Danube samples collected from 7 representative locations. The results showed that caffeine content in food ranged 5,6-158 mg/100 g, tea samples 24,71-30,81 mg/100 ml, coffee samples 1328-3594 mg/100 g, energy drinks 9,69-30,79 mg/100 ml and in the Danube samples 15,91-306,12 ng/l. Caffeine content in combined commercial formulations of non-narcotic analgesics of all brands did meet specifications. The data suggested that the proposed HPLC method can be used for routine determination and control of caffeine content in different matrices.

2021 ◽  
Vol 9 (3) ◽  
pp. 1081-1089
Author(s):  
Juthi Mirza ◽  
Masuda Sultana ◽  
Md. Esrafil ◽  
Shamoli Akter ◽  
Md. Jahangir Alam ◽  
...  

Caffeine is one of the commonly used food additives, which has unique flavor characteristics and bitter taste and used in soft drinks as flavor enhancer. An experimental study was designed to determine the concentration of caffeine in different brands of soft drinks and energy drinks available in Bangladesh by using HPLC. For chromatographic analysis, A Luna 5 C18 (2) 100A column (250×4.6 mm) was used at 37°C temperature at the wavelength of 272nm. Chromatographic separation was determined using buffer of sodium acetate and acetic acid with acetonitrile at a ratio of 80:20 (pH=4.0; flow rate of 1.0 ml/min). The results of this study showed that caffeine content in soft drinks ranged from 19.63 to 101.73 mg/100ml and highest concentration of caffeine found in brand 3 samples while lowest concentration found in brand 2 samples. Significantly higher concentration of caffeine (p<0.05) found in six soft drinks sample when compared to BSTI and FDA reference value except brand 2 sample (p>0.05). Quantification of caffeine in different brands of energy drink sample revealed that, four brand sample contained caffeine; among them brand 3 sample showed the highest levels of caffeine 295.86 mg/100ml and lowest amount found in brand 1 sample (101.74 mg/100ml). Concentration of Caffeine in soft and energy drinks exceeded the national and international standard recommended range hence this proposed HPLC method can be used for routine determination and control of caffeine content in different drinks.


2000 ◽  
Vol 44 (5) ◽  
pp. 1209-1213 ◽  
Author(s):  
Sofia Perea ◽  
Gennethel J. Pennick ◽  
Asha Modak ◽  
Annette W. Fothergill ◽  
Deanna A. Sutton ◽  
...  

ABSTRACT A new selective high-performance liquid chromatography (HPLC) method with UV detection for the determination of the investigational triazole voriconazole in human plasma by using acetonitrile precipitation followed by reverse-phase HPLC on a C18column was compared with a simple agar well diffusion bioassay method with Candida kefyr ATCC 46764 as the assay organism. Pooled plasma was used to prepare standard and control samples for both methods. The results of analyses with spiked serum samples (run as unknowns) were concordant by the bioassay and HPLC methods, with expected values being obtained. HPLC demonstrated an improved precision (3.47 versus 12.12%) and accuracy (0.81 versus 1.28%) compared to those of the bioassay method. The range of linearity obtained by both methods (from 0.2 to 10 μg/ml for HPLC and from 0.25 to 20 μg/ml for the bioassay) includes the range of concentrations of voriconazole (from 1.2 to 4.7 μg/ml) which are considered clinically relevant. Although either methodology could be used for the monitoring of patient therapy, the smaller variability observed with HPLC compared to that observed with the bioassay favors the use of HPLC for pharmacokinetic studies.


2020 ◽  
Vol 10 (6) ◽  
pp. 31-36
Author(s):  
P Nagamani ◽  
SY Manjunath ◽  
T Hemant Kumar

A simple, precise, accurate, and rapid reverse phase-high performance liquid chromatography (RP-HPLC) method with UV-Visible detector has been developed and subsequently validated for the simultaneous determination of amlodipine besylate(AML) and celecoxib(CEL) in their combined tablet dosage form. The separation was based on the use of a Flowrosil C18   analytical column (250 × 4.6 mm, i.d., 5 µm). The mobile phase consisted of a mixture of 80 volumes of acetonitrile and 20 volumes of water. The chromatography was performed by isocratic elution at a flow rate of 1 mL/min. Analytes were detected at 250 nm, with linear calibration curves at concentration ranges of 2-12 µg/ml and 50-300 µg/ml for AML and CEL respectively. The retention time of AML and CEL were 1.98 and 3.15 min respectively. The recoveries obtained were 99.46‒101.36% for AML, 99.57‒101.42% and 99.96–100.87 % for CEL. The method was validated according to International conference of harmonisation guidelines in terms of accuracy, precision, specificity, robustness, limits of detection and quantitation, and other aspects of analytical validation. The developed method was applied successfully for HPLC analysis of commercial pharmaceutical products including AML and CEL. Keywords: Amlodipine besylate; Celecoxib; RP-HPLC.


2014 ◽  
Vol 4 ◽  
pp. 40
Author(s):  
Safila Naveed ◽  

A simple, rapid, isocratic, high-performance liquid chromatography (RP-HPLC) method has been developed for the first time for simultaneous determination of ACE inhibitors (captopril, lisinopril and enalapril) and diclofenac sodium in bulk drugs, pharmaceutical products and human serum.


2021 ◽  
Vol 37 (3) ◽  
pp. 663-666
Author(s):  
G. M. M. Anwarul Hasan ◽  
Anuj Kumer Das

Caffeine, a phycostimulant is present in several foods and drinks.In the present study, beverages of different brands in Bangladeshi market were analyzed for caffeine by high-performance liquid chromatography (HPLC) using methanol-water (40:60, v/v) as mobile phase. Caffeine content ranged from 16.33 -19.33 mg/can in soft drinks and 45.66-47.33 mg/can in energy drinks respectively. These data indicated that the levels of caffeine in Bangladeshi soft drinks and energy drinks are within the ranges reported from similar products in other countries.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


Sign in / Sign up

Export Citation Format

Share Document