Prerequisites for the Calculation of Natural Lighting of Premises Taking into Account the Insolation Component in the Region of Equatorial Latitudes

2021 ◽  
pp. 35-43
Author(s):  
Adham I. Giyasov

To solve the problem of designing buildings with taking into account modern hygienic and technical requirements, it is of great importance to take into account the factors of the natural and climatic environment, in which the radiant energy of the sun plays an important role, determining the insolation-lighting-heating regime of the premises. The natural lighting of the premises is studied and the prerequisites for the refinement and development of the methodology for calculating the natural indoor lighting of the premises taking into account the insolation conditions for a specific region of the equatorial countries are formulated. Proposals for improving the methodology for calculating the daylighting in the room, taking into account the insolation components, have been developed.

Author(s):  
Stephen R. Wilk

In the years before the 19th century, the options for indoor lighting were limited and sometimes expensive. Yet artisans such as lacemakers, cobblers, and jewelers needed good lighting for their precise and delicate work. But not being very well paid, they needed a solution that would allow as many of them as possible to share the expense of lighting for work. How did they manage after the sun went down, especially in northern countries with long periods of winter darkness? Can the solutions they came up with be applied to present-day problems?


2012 ◽  
Vol 21 (4) ◽  
Author(s):  
D. A. Bezrukov ◽  
B. I. Ryabov ◽  
K. Shibasaki

AbstractOn the base of the 17 GHz radio maps of the Sun taken with the Nobeyama Radio Heliograph we estimate plasma parameters in the specific region of the sunspot atmosphere in the active region AR 11312. This region of the sunspot atmosphere is characterized by the depletion in coronal emission (soft X-ray and EUV lines) and the reduced absorption in the a chromospheric line (He I 1.083 μm). In the ordinary normal mode of 17 GHz emission the corresponding dark patch has the largest visibility near the central solar meridian. We infer that the reduced coronal plasma density of about ~ 5 × 10


2019 ◽  
Vol 91 ◽  
pp. 05019
Author(s):  
Aleksandr Konstantinov ◽  
Elena Romanerikova ◽  
Margarita Borisova

The article presents some features of the translucent structures design of schools and kindergartens. The analysis of technical requirements for translucent structures of schools and kindergartens was represented. Based on a review of the typical composition of the premises of schools and kindergartens, it was found that different technical requirements should be established for translucent structures installed in rooms of various functional purposes and operating conditions. It was determined that the existing construction practice doesn’t take into account the differentiation of requirements for translucent structures of various premises of schools and kindergartens, and their design, as a rule, is taken to be the same for the entire construction objects. In future, it leads to disruption of the normal operation of the facility (especially in terms of ensuring normal temperature and humidity conditions and natural lighting of the premises). The features of the replacement of translucent structures in reconstructed schools and kindergartens were considered. It has been revealed that the use of modern types of translucent structures of standard construction (first of all, PVC window units) in the reconstruction leads to a significant decrease in the indicators of natural room lighting. Ways to solve this problem were given. Moreover, perspective directions for future research of the issue under consideration were considered.


2010 ◽  
Vol 18 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Algimantas Sirvydas ◽  
Vidmantas Kučinskas ◽  
Paulius Kerpauskas ◽  
Jūratė Nadzeikienė ◽  
Albinas Kusta

Solar radiation energy is used by vegetation, which predetermines the existence of biosphere. The plant uses 1–2% of the absorbed radiant energy for photosynthesis. All the remaining share of the absorbed energy, accounting for 99–98%, converts into thermal energy in the plant leaf. At the lowest wind under natural surrounding air conditions, plant leaves change their position with respect to the Sun. An oscillating plant leaf receives a variable amount of solar radiation energy, which causes changes in the balance of plant leaf energies and a changing emission of heat in the leaf. The analysis of solar radiation energy pulsations in the plant leaf shows that when the leaf is in the edge positions of angles 10°, 20° and 30° with respect to the Sun, 1.5%; 6% and 13% less of radiation energy reach the leaf, respectively. During periodic motion, when the amplitude of leaf oscillation is no bigger than 10°, the plant surface receives up to 1.6% less of solar radiation energy within a certain period of time, and when the amplitude of oscillation reaches 30° up to 14% less of solar radiation energy reach the leaf surface. The total amount of radiant energy received during pulsations of solar radiation energy is not dependent on the frequency of oscillation in the same interval of time. Temperature pulsations occur in the leaf due to solar radiation energy pulsations when the plant leaf naturally changes its position with respect to the Sun. Santrauka Saules spinduliuotes energija būtina augalijai, kuri lemia biosferos egzistavima. Augalas 1–2 % absorbuotos spinduliuotes energijos sunaudoja fotosintezei, o 99–98 % absorbuotos energijos augalo lape virsta šilumine energija. Natūraliomis aplinkos salygomis esant mažiausiam vejui augalo lapu padetis Saules atžvilgiu keičiasi. Taigi augalo svyruojančio lapo gaunamas Saules spinduliuotes energijos kiekis yra kintamas, tai sukelia pokyčius augalo lapo energiju balanse ir kintama šilumos išsiskyrima lape. Analizuojant Saules spinduliuotes energijos pulsacijas augalo lape, nustatyta, kad, lapui esant kraštinese 10°, 20° ir 30° kampu padetyse Saules atžvilgiu, i ji atitinkamai patenka 1,5 %; 6 % ir 13 % mažiau spinduliuotes energijos. Augalo lapui periodiškai svyruojant, kai svyravimo amplitude yra iki 10°, per tam tikra laika i lapo paviršiu patenka iki 1,6 % mažiau Saules spinduliuotes energijos, o kai svyravimo amplitu‐de siekia iki 30°, – iki 14 % mažiau. Saules spinduliuotes energijos pulsaciju metu gautas bendras spinduliuotes energijos kiekis nepriklauso nuo to paties laiko intervalo svyravimo dažnio. Del Saules spinduliuotes energijos pulsaciju, natūraliai keičiantis augalo lapo padečiai Saules atžvilgiu, lape kyla temperatūros pulsacijos. Резюме Растения потребляют солнечную лучевую энергию, которая является основой существования биосферы. 1–2% абсорбированной лучевой энергии они используют на фотосинтез. В натуральных условиях при малейшем дуновении ветра листья растений меняют свое положение относительно Солнца. Колеблющийся лист получает переменное количество лучевой энергии, которое вызывает изменения в энергетическом балансе листа растения, что сказывается на переменном выделении тепла в листе. Анализируя пульсации солнечной лучевой энергии в листе растения, установлено, что при крайних положениях листа относительно Солнца на 10, 20 и 30 градусов на лист попадает соответственно на 1,5%, 6% и 13% меньше лучевой энергии. При периодическом колебании листа, когда амплитуда его колебания составляет 10 градусов, за известный промежуток времени солнечная лучевая энергия, попадающая на поверхность листа, уменьшается до 1,6%, а при амплитуде колебания до 30 градусов соответственно количество лучевой энергии на поверхности листа растения уменьшается до 14%. Установлено, что суммарное количество солнечной лучевой энергии во время пульсации не зависит от частоты колебания листа за одинаковый промежуток времени. Пульсации солнечной лучевой энергии при изменении положения листа растения относительно Солнца вызывают температурные пульсации в листе.


1994 ◽  
Vol 143 ◽  
pp. 1-3
Author(s):  
V. Gaizauskas

Recent measurements made from platforms in space prove beyond question that the radiant energy received from the Sun at the Earth, once called the ‘solar constant’, fluctuates over a wide range of amplitudes and time scales. The source of that variability and its impact on our terrestrial environment pose major challenges for modern science. We are confronted with a tangled web of facts which requires the combined ingenuity of solar, stellar, planetary and atmospheric scientists to unravel. This brief overview draws attention to key developments during the past century which shaped our concepts about sources of solar variability and their connection with solar activity.


2020 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Antonio Peña-García ◽  
Ferdinando Salata

The importance of accurate lighting has been proven to be essential for good performance in all kinds of buildings, where most of the professional activities are carried out. National regulations and international standards dealing with indoor lighting establish the technical requirements of lighting installations to ensure the performance of their users. These requirements deal with illuminance on the working plane, uniformity, glare, color temperature of light and some other parameters. However, regulations and technical documents on indoor lighting are mainly referred to standard conditions that are sometimes far away from the reality. Hence, some installations can fulfill the technical requirements, whilst being uncomfortable for task development, impairing user’s performance and are oversized in terms of energy consumption. This work departs from a field study in highlighting the regulatory limitations in the matter of reflectance, to propose a quasi-Lambertian approach to real conditions in indoor workplaces with a special aim in educative environments. It consists of the introduction of “effective reflectance” coefficients for some key visual tasks and furniture carried out by users in certain typical positions and working planes. Based on this coefficient, it is proposed to implement a simple measurement and luminary programming methodology adapted to each particular workplace, especially in educational centers. The final target is to improve visual performance and save energy.


2005 ◽  
Vol 62 (4) ◽  
pp. 974-992 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Remer ◽  
J. V. Martins ◽  
Y. J. Kaufman ◽  
A. Plana-Fattori ◽  
...  

Abstract The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean–land region that included the Chesapeake Lighthouse [Clouds and the Earth’s Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.


2021 ◽  
Vol 16 ◽  
pp. 121-127
Author(s):  
Mostafa M. E. F. Shams ◽  
Hosam Abd El-Aziz Amr ◽  
Rania Rushdy Moussa

Schools and universities are the main spaces for learning, in which he building design can easily affect the learning and interactive process where indoor environment should be considered carefully when designing these learning spaces. One of the most important factors considered is lighting. The aim of this research is to investigate the effect of different types of indoor lighting on the learning and interactive process. In this research, The indoors lighting efficacy in two different types of educational places were tested in a quantitative way in addition to users survey for these places to test their satisfaction with the current indoor lighting quality which results that the users prefers natural lighting although it got negative feedback due to inconsistency. Finally, this research gives some recommendations for the usage of the indoors lighting to further enhance the learning and interactive process


The expression “effective temperature of the sun” has by this time obtained a well-defined meaning, and may be taken (as stated by Violle and other physicists) to be that uniform temperature which the sun would have to possess if it had an emissive power equal to unity, at the same time giving out the same amount of radiant energy as at present. The older estimates of this quantity were little more than guesses, and varied between 1500° C. and 3 to 5, 000, 000° C., or more.


Sign in / Sign up

Export Citation Format

Share Document