scholarly journals PENGARUH PERBANDINGAN VOLUME FASA AIRDENGAN FASA ORGANIK DAN KONSENTRASI AgDALAMFASA AIR PADA EKSTRAKSI PERAKDARI LIMBAH FOTO ROENTGEN

2016 ◽  
Vol 4 (1) ◽  
pp. 41
Author(s):  
Minasari Minasari ◽  
Yeti Kurniasih ◽  
Ahmadi Ahmadi

Roentgen photo waste containing silver metal ion (Ag+) in form of silver thiosulfic complex ([Ag(S2O3)2]3-) that danger for health and environment. To prevent contamination to environment by silver metal from roentgen photo waste, separation become need to do. Solvent extraction was one of available separation technique on this case. The aim of this research was to evaluate the influence of few extraction parameters that was water-organic phase ratio and Ag concentration on water phase to silver extraction percentage, and apply optimum condition to roentgen photo waste sample. Silver extraction was applied on various water-organic phase ratios, there were 5 : 10; 10 : 10; 25 : 10; 50 : 10; and 75 : 10 mL and various silver concentration on water phase, there were 10, 20, 30, and 40 ppm. Ag+ ion concentration was measured by AAS in 328.22 nm wavelength before and after extraction process, than calculation of silver extraction percentage could be conducted. Based on research result, optimum condition of silver extraction was obtained on 1 : 2 of water-organic phase ratio and 10 ppm of Ag concentration on water phase. 10,27 % silver extraction was obtained on application of optimum extraction condition on roentgen photo waste.

2016 ◽  
Vol 4 (2) ◽  
pp. 87
Author(s):  
Novita Rusmayanti Andika Putri ◽  
Yeti Kurniasih ◽  
Ahmadi Ahmadi

Photo roentgen used for examination of internal organs can produce wastes that are harmful to health and the environment because they containing silver metal ion(Ag+) inform of silver thiosulfate complex ([Ag(S2O3)2]-3). Therefore it was necessary for the separation of Ag metal so that the metal does not pollute the environment and can be used economically. One way to separate the metal Ag is by solvent extraction techniques. This study aimed to determine the effect of concentration ratio of TBP:D2EHPA and carrier compound concentration in the organic phase of the percent extraction of silver metal then applied to the sample photo roentgen waste. Extraction of the metals Ag done by varying the ratio of the combined carrier concentration of TBP and D2EHPA in kerosene by concentration ratio was 0: 1; 0.25: 0.75; 0.5: 0.5; 0.75: 0.25 and 1: 0 M as well as by varying the carrier concentration in the organic phase ranging from 0 M; 0.5 M; 1 M and 1.5 M. Measuring the concentration of metal ions Ag+in water phase before and after extraction was determined by atomic absorptionspectrophotometer (AAS) at a wavelength of 328,22 nm then calculated percent extraction. Based on the research that obtained the highest percent extraction on single used carrier compounds and compound concentration carrier D2EHPA in optimum water was 0.5 M with 58.22% percent extraction. Applications optimum conditions to the extraction of silver metal obtained from photo roentgenwaste percent extraction was 10.27%.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


1981 ◽  
Vol 59 (12) ◽  
pp. 1734-1744 ◽  
Author(s):  
Thomas M. Fyles ◽  
Virginia A. Malik-Diemer ◽  
Dennis M. Whitfield

An artificial membrane system based on a series of macrocyclic polyether carriers (crown ethers) is described. Under the influence of a proton gradient the carriers move alkali metal ions from basic to acidic solution through a chloroform membrane phase. Transport occurs against the concentration gradient of the transported ion as a result of a coupled counterflow of protons. Different transport behaviors are observed depending upon the metal ion concentration. At high metal ion concentration the amount transported is a linear function of time; at lower metal ion concentration the amount transported is a complex function of time which may be described as the result of a pair of consecutive first order processes. Effects of metal ion, carrier, and proton concentration on transport rate are considered. The rate increases with increasing metal ion or carrier concentration but is essentially independent of the pH of either aqueous phase. Increased lipophilicity of the carrier also results in a rate increase. Carriers derived from 18-crown-6 transport potassium selectively and all ions more rapidly than 15-crown-5 derivatives which are, however, selective for sodium. The overall efficiency of the system is discussed in terms of competing "leak" reactions, either of cations from the basic phase or of anions from the acidic phase.


2021 ◽  
pp. 24-38
Author(s):  
Devyanshu Sachdev ◽  
Shyam Sunder Mishra ◽  
Srinivas Tadepalli

The current work centres around on the expulsion of toxic heavy metals from mechanical effluents through the cycle of adsorption. This traditional approach is expensive, henceforth the utilization of ease, bountiful naturally neighbourly bio sorbents must be utilized. Adsorption conduct of copper and lead from waste water has been researched in this paper utilizing adsorbent like used tea powder waste. Copper and lead are profoundly harmful metal particles and considered as the need contamination delivered from different chemical ventures electroplating, blending exercises, smelting, battery manufacture etc. The effluents have been unnecessarily delivered into the climate because of expeditious industrialization and have made a worldwide concern. Hence, they should be taken out before release. In current paper, the trial results did in batch adsorption measure utilizing the treated waste tea powder with engineered test arranged in the test center were tried and introduced. The different boundaries, for example, solution’s pH, initial metal ion concentration, temperature and adsorbent dosage on the adsorption of Cu and Pb were considered. The greatest evacuation of Copper was above (at pH 5) 90% was observed using used tea waste powder at 100 ppm Copper solution. The removal of lead was above 85% (at pH 5) was respectively observed at the same operating conditions.


REAKTOR ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 27
Author(s):  
M Mawardi ◽  
Edison Munaf ◽  
Soleh Kosela ◽  
Widayanti Wibowo

Karakteristik pemisahan ion Cr3+ dan Cr6+ dalam larutan melalui proses biosorpsi menggunakan biomassa alga hijau Spirogyra subsalsa dengan sistem batch telah diteliti. Dalam pelaksanaannya diawali dengan melakukan analisis kualitatif gugus fungsi dalam biomassa menggunakan instrumen FTIR, kemudian dipelajari karakteristik pengaruh variabel pH awal larutan, ukuran partikel biosorben, kecepatan pengadukan, pengaruh pemanasan biosorben, laju penyerapan, pengaruh konsentrasi larutan ion logam terhadap kapasitas serapan biomassa alga. Berdasarkan spektra spektroskopi FTIR dapat disimpulkan bahwa  biomassa alga hijau S. Subsalsa mengandung gugus-gugus karboksilat, amina, amida, amino, karbonil dan hidroksil, disamping adanya senyawa silikon, belerang dan fosfor. Hasil penelitian yang diperoleh  memperlihatkan bahwa kapasitas biosorpsi sangat dipengaruhi oleh pH larutan, waktu kontak dan konsentrasi awal larutan. Biosorpsi optimum kation Cr3+ terjadi pada pH 4,0 sedangkan ion Cr6+ terjadi pada pH 2,0 kemudian berkurang dejalan dengan naiknya pH larutan. Perhitungan dengan persamaan Isoterm Langmuir diperoleh data kapasitas serapan maksimum biomassa alga S. subsalsa untuk masing-masing ion Cr3+ dan Cr6+ adalah 1,82 mg (0,035 mmol) dan 1,51 mg (0,029 mmol) per gram biomassa kering. Kinetika biosorpsi berlangsung relatif cepat, dimana selama selang waktu 30 menit, masing-masing ion terserap sekitar 95,7%; dan 86,5%. Daya serap biomassa juga dipengaruhi kecepatan pengadukan, sedangkan faktor ukuran partikel dan pemanasan biosorben kurang mempengaruhi daya serap biomassa. Key Word : biosorpsi, spirogyra subsalsa, krom(III), krom(VI), sistem batchAbstract Separation of Ion Chromium(III) and Chromium(IV) In Solution Using Green Algae Biomass Spirogyra subsalsa as Biosorbent. The characteristics of Cr3+andCr6+ ion separation in solution through biosorption process using green algal biomass Spirogyrasubsalsa with batch systems have been investigated. The study began with aqualitative analysis of functional groups in biomass using FTIR instrument, then followed by a study of the characteristics of influences by several variables, such as: the initial pH of the solution,the size of biosorben particles, stirring speed, the effect of heating the biosorben, the rate of absorption, and the effect of metal ion concentration in solution on the absorption capacity of algal biomass. Based on FTIR spectroscopy spectra gave a conclusion that biomass of green algae S.subsalsa contains carboxylate groups, amine, amide, amino, carbonyl and hydroxyl, in addition to silicon, sulfur, and phosphorus compounds. The results showed that the biosorption capacity was strongly influenced by pH, contact time, and initial concentration ofthe solution. The optimum biosorption of Cr3+cation occurred at pH 4.0 while that of Cr6+ions occurred at pH 2.0 and then decreased with the increasing pH of solution. The calculation of Langmuir isotherm equation showed that the maximum absorption capacity of algal biomass S.subsalsa for Cr3+and Cr6+ ion respectively was 1.82mg (0.035 mmol) and 1.51 mg (0.029 mmol) pergram of dry biomass. The kinetics of biosorption took place relatively quick, in which during the 30minutes time interval, each ion was absorbed approximately 95.7%; and 86.5%. The absorptive capacity of biomass was also influenced by stirring speed, while the size of particles and heating biosorben gave lessinfluence to the absorption of biomass.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 125-135 ◽  
Author(s):  
T. Hall ◽  
J. Pressdee ◽  
R. Gregory ◽  
K. Murray

The occurrence of the protozoan parasite Cryptosporidium parvum in water supplies, and the resultant outbreaks of cryptosporidiosis in the UK and USA, have led to concern over the ability of conventional water treatment processes to remove Cryptosporidia from water sources. Large scale pilot plant trials of water treatment have been carried out in the UK to establish the degree of removal that can be achieved by a range of treatment processes, including dissolved air flotation, and to compare the performance of different treatment options. Results from part of these trials are presented in this paper. These results suggest that well operated chemical coagulation based treatment, using either dissolved air flotation or floc blanket clarification, should be capable of achieving removal of Cryptosporidium oocysts of over 99%. There was no evidence of differences in performance between the different types of filter media investigated. The risk of increased Cryptosporidium concentration in the filtered water will increase as filtrate turbidity increases. However, other factors such as high coagulant metal-ion concentration in the filtered water, or a sudden increase in clarified water turbidity, without any increase in filtered water turbidity, may also indicate treatment problems and associated risk from Cryptosporidia. Recycling of backwash waters may also increase the risk.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4390
Author(s):  
Sevil Savaskan Yilmaz ◽  
Nuri Yildirim ◽  
Murat Misir ◽  
Yasin Misirlioglu ◽  
Emre Celik

Poly(acrylic acid/Kryptofix 23-Dimethacrylate) superabsorbent polymer [P (AA/Kry23-DM) SAP] was synthesized by solution polymerization to remove Co, Ni, Cu, Cd, Mn, Zn, Pb, Cr, and Fe ions in water and improve the quality of the water. Kry23-DM cross-linker (1,4,7,13,16-Pentaoxa-10,19 diazo cyclohexene icosane di methacrylate) was synthesized using Kry23 and methacryloyl chloride. The characterization of the molecules was done by FTIR, TGA, DSC, and SEM techniques. The effects of parameters such as pH, concentration, and the metal ion interaction on the heavy metal ions uptaking of SAP was investigated. It was observed that P (AA/Kry23-DM) SAP has maximum water absorption, and the absorption increases with the pH increase. Adsorption rates and sorption capacity, desorption ratios, competitive sorption (qcs), and distribution coefficient (log D) of P(AA/Kry23-DM) SAP were studied as a function of time and pH with the heavy metal ion concentration. Langmuir and Freundlich isotherms of the P (AA/Kry23-DM) SAP were investigated to verify the metal uptake. Molecular mechanic (MM2), Assisted Model Building with Energy Refinement (AMBER), and optimized potentials for liquid simulations (OPLS) methods. were used in quantum chemical calculations for the conformational analysis of the cross-linker and the SAP. ΔH0f calculations of the cross-linker and the superabsorbent were made using Austin Model 1(AM1) method.


Author(s):  
Rusmidah Ali ◽  
Boon Siew Ooi

Dalam kajian ini, ZnO dan TiO2 digunakan sebagai fotomangkin dalam pendegradasian pewarna New Methylene Blue N (NMBN). Kadar fotodegradasi diukur menggunakan alat spektrofotometer UV-Vis. Dalam kajian ini, New Methylene Blue N menunjukkan nilai serapan pada λ = 590 nm dan λ = 286 nm. Lampu UV (λ = 354 nm) digunakan dalam proses fotodegradasi. Dalam proses degradasi menggunakan ZnO menunjukkan 81.42% NMBN terdegradasi pada λ = 590 nm dan 77.75% pada λ = 286 nm. Sebaliknya, degradasi menggunakan TiO2 adalah 25.68% pada λ = 590 nm dan 26.37% pada λ = 286 nm. Peratus degradasi New Methylene Blue N ialah 88.89% dan 68.94% pada masing-masing λ = 590 nm dan λ = 286 nm apabila ditambahkan dengan H2O2. Campuran ZnO dan TiO2 dalam nisbah 85: 15 (0.085 g; 0.015 g) merupakan campuran fotomangkin yang paling optimum iaitu dengan peratus degradasi NMBN sebanyak 96.97% dan 93.61% pada λ = 590 nm dan λ = 286 nm. Penambahan ion logam Cu2+ memberikan peratus degradasi tertinggi berbanding ion logam lain iaitu 83.83% pada λ = 590 nm. Penambahan ion logam Pb2+ memberikan peratus degradasi tertinggi pada λ = 286 nm iaitu 81.25% pewarna terdegradasi. Keadaan optimum dicapai pada pH 5.90, dengan peratus degradasi tertinggi iaitu 92.84% dan 89.30% pada masing-masing λ = 590 nm dan λ = 286 nm. Kata kunci: New Methylene Blue N; fotodegradasi; larutan; ZnO; TiO2 In this study, ZnO and TiO2 are used as photocatalyst to degrade the dye, New Methylene Blue N (NMBN). The photodegradation rate was measured using UV-Visible spectrophotometer. In this study, New Methylene Blue N showed absorption values at λ = 590 nm and λ = 286 nm. UV lamp (λ = 354 nm) is used in the photodegradation process. Results showed that ZnO is a better photocatalyst compared to TiO2. The degradation by ZnO showed that 81% of NMBN was degraded at λ = 590 nm and 77.75% at λ = 286 nm. In contratst, the degradation using TiO2 was 25.68% at λ = 590 nm and 26.37% at λ = 286 nm. The percent degradation of New Methylene Blue N is 88.89% and 68.94% at λ = 590 nm and λ = 286 nm respectively when H2O2 was added. A mixture of ZnO and TiO2 in the ratio of 85: 15 (0.085 g: 0.015 g) is the most optimum ratio for the mixed photocatalyst where the degradation percentage of NMBN are 96.97% and 93.61% at λ = 590 nm and λ = 286 nm. The addition of Cu2+ metal ion gave the highest percentage of degradation (83.83% at λ = 590 nm) compared to other metal ions. The addition of Pb2+ gave the highest percentage of degradation at λ = 286 nm with 81.25% degradation of the dye. The optimum condition was achieved at pH 5.90, which gave the highest percentage degradation, 92.84% and 89.30% at λ = 590 nm and λ = 286 nm respectively. Key words: New Methylene Blue N; photodegradation; aqueous; ZnO; TiO2


Sign in / Sign up

Export Citation Format

Share Document