scholarly journals Synthesis of NiO/ZnO Nanoparticles using 2-Propanol Solvent and their Applications for Methylene Blue Degradation

Author(s):  
Bakhtawar Sajjad ◽  
Auswa Nadeem ◽  
H. Tanzilla Hussain ◽  
Shaista Ali ◽  
Muhamad Akhyar Farrukh

T he nanoparticles play a significant role in fabrication process which are used at large scale in various fields e.g., sensors, electronics drug delivery, optics, catalysis and in water purification process. Nanoparticles (NiO/ZnO) were synthesized using sol-gel technique. In this method, 2-propanol was taken to analyze the particle size. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the presence of ZnO/NiO. Ultraviolet Visible (UV) data recorded a band gap for ZnO that was 4.1 eV while UV spectrum of methylene blue demonstrated a decrease in concentration of methylene blue while using NiO/ ZnO as catalyst.

2014 ◽  
Vol 789 ◽  
pp. 44-47
Author(s):  
Xiu Hong Liang ◽  
Xiao Ye Fu

In this paper, TiO2/diatomite and Ce-TiO2/diatomite were prepared by sol-gel method in order to improve the spectrum responding range and its photocatalytic effect. The obtained samples were characterized by means of X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Infrared Absorption Spectroscopy (FT-IR) and so on, and the photocatalytic activity was evaluated by methylene blue degradation. The heat stability of TiO2/diatomite was improved by Ce-doped; TiO2 was successfully loaded on diatomite through physical and chemical action. The de-coloring ratio of methylene blue of the two composite materials were similar under UV light, Ce-TiO2/diatomite was higher under visible light, it reached to 80%, and it kept 65% after the five times repeated using of Ce-TiO2/diatomite.


2021 ◽  
Vol 333 ◽  
pp. 11002
Author(s):  
Tippabust Eksangsri ◽  
Chaweewan Sapcharoenkun ◽  
Siripond Phromma

Titanium dioxide (TiO2) has been extensively studied as photo-catalyst for water treatment, air purification and antibacterial applications due to its challenging properties such as chemical stability, environmental friendly and strong photocatalytic activity. However, the limitation of TiO2 on its dependent to ultraviolet radiation for photocatalytic activity is still aroused. In this study, silver doped titanium dioxide (Ag-TiO2) was synthesized by wet-ball milling sol–gel method (WBMS). Ag-TiO2 molar ratio was varied from 0% to 10% to study the effect of silver content on the synthesized Ag-TiO2 characteristics and the ability to apply on antibacterial applications. The objective of this work was to find an optimal concentration of Ag in Ag-TiO2. Characterization of the particle size, morphology, and surface area of synthesized Ag-TiO2 were discussed by techniques of transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). Photocatalytic activity was investigated from degradation of methylene blue. Antibacterial activity was conducted by finding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests performed on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under dark condition and under visible light. The results demonstrated that the doping of Ag inhibited crystal growth of Ag-TiO2. The smallest particle size and the highest surface area were obtained from 5% Ag-TiO2. Also, it was found that methylene blue degradation rate increased to the highest number of 1.62x10−3 min−1 when Ag concentration reached 5%, and methylene blue degradation rate reduced when Ag concentration was higher than 5%. The antibacterial activity of Ag-TiO2 was better than TiO2. The optimal concentration of 3-5% Ag-TiO2 was observed from the MIC and MBC tests.


2011 ◽  
Vol 295-297 ◽  
pp. 1978-1981
Author(s):  
Jian Feng Ju ◽  
Dong Hui Wu ◽  
Yu Jun Shi

PVP/ZnO-TiO2 composite nanofibers were prepared by Sol-gel processing followed by electrospinning technique using Ti(OC4H9)4 and polyvinglpyrrolidone ( PVP) as starting materials. ZnO-TiO2 nanofibers of 100–200 nm diameter were obtained by high temperature calcinations of the inorganic organic PVP/ZnO-TiO2 composite fibers.The materials were characterized by differential scanning calorimetry thermogravimetric analysis (DSC- TGA) , Fourier transform infrared (FT-IR),and scanning electron microscopy (SEM). The process of the photocatalytic degradation of methylene blue using ZnO-TiO2 nanofiber as catalyst was investigated.The results show that the ZnO-TiO2 nanofiber dopped 3% ZnO has better photocatalytic activity for methylene blue degradation, the degradation rate of methylene blue solution reached 99% under sunshine for 6 h., and it’s still 95% after eight times reuse.


1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


2009 ◽  
Vol 45 (6) ◽  
pp. 624-629 ◽  
Author(s):  
Vera Abramova ◽  
Alexander Sinitskii

2013 ◽  
Vol 668 ◽  
pp. 13-16
Author(s):  
Qing Shan Li ◽  
Biao Zhan ◽  
Wei Hong ◽  
Guang Zhong Xing

Opal as a carrier, tetrabutyl titanate as a titanium source, TiO2 loaded on opal was prepared by sol-gel technique. The photocatalysts were characterized by XRD, TEM and UV-VIS absorption spectrum. Their photocatalytic activities were examined by the photocatalytic decolorization of methylene blue solution under UV light irradiation. The effects of calcination temperature, the amount of TiO2 loading and pH on photocatalytic activities were discussed. The results show that TiO2 supported on opal induced enhancement of photocatalytic decolorization rant and TiO2 doping is about 30 wt. % with 92.15% of decolorization rate at 700°C.


2022 ◽  
Author(s):  
Monika Patel ◽  
Sunita Mishra ◽  
Ruchi Verma ◽  
Deep Shikha

Abstract Nanotechnology is a completely unique branch of technology that offers with substances in a very small size between (1-100 nm) with various crystal shapes which include spherical nanoparticles, flower shaped, Nano rods, Nano ribbons, and Nano platelets. Metals have ability to produce large number of oxides. These metal oxides play an major role in many areas of chemistry, physics, material science and food science. In this research, Zinc Oxide (ZnO) and Copper (II) oxide nanoparticles were synthesized via sol-gel process using zinc nitrate and copper (II) nitrate as precursor respectively. The characterization of CuO and ZnO nanoparticles was done by using various techniques. X-ray Diffraction (XRD) indicates the crystallinity and crystal size of CuO and ZnO nanoparticle. Fourier transform infrared spectroscopy (FT-IR) was used to get the infrared spectrum of the sample indicating composition of the sample which contains various functional groups. XRD result shows the particle size of CuO at highest peak 29.40140 was 61.25 nm and the particle size of ZnO at highest peak 36.24760 was 21.82 nm. FT-IR spectra peak at 594.56 cm-1 indicated characteristic absorption bands of ZnO nanoparticles and the broad band peak at 3506.9 cm-1 can be attributed to the characteristic absorption of O-H group. The analysis of FT-IR spectrum of CuO shows peaks at 602.09, 678.39, and 730.19cm−1 which refer to the formation of CuO. A broad absorption peak noticed at 3308.2 cm−1 attributed to O–H stretching of the moisture content.


2019 ◽  
Vol 10 (4) ◽  
pp. 2765-2776
Author(s):  
Naresh Kshirasagar ◽  
Goverdhan Puchchakayala ◽  
Balamurgan K

The new investigation in this present work is to develop microsponges constructed novel drug delivery system for sustained action of Flurbiprofen. Quai-emulsion solvent diffusion method was engaged using Ethyl cellulose and Eudragit RS100 with drug: polymer ratio for development of microsponges. For optimization purposes, several factors are considered in the investigation. Several evaluation studies for the formed microsponges were carried out FT-IR, SEM, DSC, X-RD, particle size analysis, morphology, drug loading and In vitro drug release studies were carried out. Finally, it was concluded that there is no drug-polymer interaction as per DSC & FT-IR. Encapsulation efficiency, particle size and drug content showed a higher impact on alteration of drug-polymer ratio. SEM studies showed that morphological microsponges are spherical and porous in nature and with the mean particle size of 38.86 μm. The gel loaded with microsponges, were followed by In vitro and Ex vivo drug release studies by modified Franz diffusion cell. Skin delivery of optimized formulation enhanced the drug residence time and maintained therapeutic concentration for an extended period of time, which is possible to show sustained action of the drug.


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2019 ◽  
Vol 19 (6) ◽  
pp. 3479-3486 ◽  
Author(s):  
Nilam Qureshi ◽  
Manish Shinde ◽  
Sudhir Arbuj ◽  
Sunit Rane ◽  
Anand Bhalerao ◽  
...  

We report tunable-morphology oriented facile yet scalable route to synthesize 1D (nanorod) and 2D (nanobelt) MoO3 nanostructures at gram scale using conventional as well as sonochemistry assisted sol–gel technique. The structural, morphological and optical properties of the samples can be befittingly altered by varying the synthesis protocol. The resultant orthorhombic MoO3 nanomorphs demonstrated efficient and expeditious photocatalytic degradation of the pollutant dye, Methylene Blue (MB). We have observed that appreciable photocatalytic MB dye-degradation can be accomplished within 30 minutes with high rate constants of 0.0786 min−1 and 0.233 min−1 for rod and belt-like MoO3-nanostructures, respectively. The pilot results indicate that the resultant MoO3 nanomorphs can be potentially used as solar light driven industrial photocatalyst material with their intrinsic photostability.


Sign in / Sign up

Export Citation Format

Share Document