scholarly journals Control of mildew in vines with cinnamon extract and catalase activity in organic production

2021 ◽  
Vol 10 (10) ◽  
pp. e214101018885
Author(s):  
Carla Garcia ◽  
Katiane Fedrigo ◽  
André Gabriel ◽  
Renato Vasconcelos Botelho ◽  
João Domingos Rodrigues ◽  
...  

Management with synthetic fungicides in the control of phytopathogens in viticulture can cause environmental pollution and contamination with residues in grape cluster. The objective of this study was to verify the effect of aqueous cinnamon extract on the in vitro and in vivo control of Plasmopara viticola on catalase activity on ‘Isabel Precoce’ vines. The treatments used were: aqueous cinnamon extract (ACE) at concentrations of 0.12; 0.25 and 0.50% plus 0.25% vegetable oil (VO); being the standard treatments VO (0.25%), Bordeaux mixture 1:1:100 (lime: copper sulfate: water) and water only. The germination tests of P. viticola sporangia were carried out in incubation periods of 4 and 24 hours of the pathogen in contact with the treatments. In addition, the area under the disease progress curve (AUDPC) and the activity of the catalase enzyme were estimated in plants grown in the greenhouse. The results indicated that the treatments with 0.12%, 0.25% and 0.5% ACE with VO reduced the germination of P. viticola. In relation to the AUDPC, the 0.25% dose of VO associated ACE reduced 65% and 67% in leaf discs and vines in the greenhouse, respectively. This fact is related to the induction of CAT activity provided by this dose in the periods of 2HBA, 2HAI and 4HAI. Thus, it can be said that the ACE associated with VO can be used to control the downy mildew of the ‘Isabel Precoce’ vine.


Author(s):  
Marco Bonato ◽  
Francesca Corrà ◽  
Marta Bellio ◽  
Laura Guidolin ◽  
Laura Tallandini ◽  
...  

Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.



2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Crystal L. Jones ◽  
Shweta S. Singh ◽  
Yonas Alamneh ◽  
Leila G. Casella ◽  
Robert K. Ernst ◽  
...  

ABSTRACT The loss of fitness in colistin-resistant (CR) Acinetobacter baumannii was investigated using longitudinal isolates from the same patient. Early CR isolates were outcompeted by late CR isolates for growth in broth and survival in the lungs of mice. Fitness loss was associated with an increased susceptibility to oxidative stress since early CR strains had reduced in vitro survival in the presence of hydrogen peroxide and decreased catalase activity compared to that of late CR and colistin-susceptible (CS) strains.



Author(s):  
Ngoh Dooh Jules Patrice ◽  
Deurnaye Placide ◽  
Abdoul Madjerembe ◽  
Mbou T. Pavel Rony ◽  
Djongnang Gabriel ◽  
...  

Aims: The aim of this work was to evaluate effect of Mancozeb 80 WP against Colletotrichum gloeosporioides, the agent responsible of anthracnose of cashew tree (Anacardium occidentale  L.). Study Design: The experimental design was in completely randomized blocks with three replications. Place and Duration of Study: in vitro and in vivo experiments were performed in Laboratory of  Department of Biological Sciences, University of Maroua during six months. Field trial was carried out in Kelo, Chad during three months. Methodology: Isolates were obtained from diseased organs (leaves and fruits) from Kélo in Chad and Maroua in Cameroon. The concentrations used in the laboratory were C1 (5 mg/ml), C2 (0.5 mg/ml), C3 (0.05 mg/ml), C4 (0.005 mg/ml), C5 (0.0 mg/ml). Radial growth, sporulation, conidial germination and pathogenicity were used to characterize and evaluate the effect of Mancozeb on the isolates in vitro. The preventive test was performed on three-month-old plants previously treated with Mancozeb. The concentration of 5 g/l was applied to the field and the incidence and severity were used to calculate the AUIPC (Area Under Disease Incidence Progress Curve) and AUSiPC (Area Under Disease Severity Index Progress Curve) curves. Results: Mancozeb reduced radial growth of all isolates at concentrations C1 (5 mg/ml), C2 (0.5 mg/ml) and C3 (0.05 mg/ml). The percentages of inhibition ranged from 50 to 100%. Mancozeb 80 WP completely (100%) inhibited the germination of C. gloeosporioides conidia in vitro. Mancozeb has protected cashew plants in vivo at the concentration C1 (5 mg/ml). AUIPC and AUSiPC were higher on control plants and lower on Mancozeb-treated plants. Conclusion: Mancozeb 80 WP may be associated in integrated pest management strategy against anthracnose.



Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2765
Author(s):  
Christian Kraus ◽  
Rada Abou-Ammar ◽  
Andreas Schubert ◽  
Michael Fischer

In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse effects on the ecosystem. Therefore, alternative, organic fungicides against Downy Mildew are urgently needed to reduce the copper load in vineyards. In this study, the use of Warburgia ugandensis Sprague (Family Canellacea) leaf and bark extracts as potential fungicides against Downy Mildew were evaluated. In vitro (microtiter) and in vivo (leaf discs, seedlings) tests were conducted, as well as field trials to determine the efficacy of the extracts against Downy Mildew. The results revealed an MIC100 of 500 µg/mL for the leaf extract and 5 µg/mL for the bark extract. Furthermore, experiments with leaf discs and seedlings demonstrated a strong protective effect of the extracts for up to 48 h under (semi-) controlled conditions. However, in field trials the efficacy of the extracts distinctly declined, regardless of the extracts’ origin and concentration.



2014 ◽  
Vol 8 (5) ◽  
pp. 248-253 ◽  
Author(s):  
Kumar Chaurasia Amit ◽  
Chaurasia Shubha ◽  
Chaurasia Sushmita ◽  
Chaurasia Shridha


2005 ◽  
Vol 30 (5) ◽  
pp. 535-537 ◽  
Author(s):  
Beatriz M Barguil ◽  
Mário Lúcio V Resende ◽  
Renata S Resende ◽  
J. Evando A. Beserra Júnior ◽  
Sônia M. L Salgado

Phoma leaf spot, caused by Phoma costarricensis poses a serious threat to coffee (Coffea arabica) production, especially in the highlands of the state of Minas Gerais, Brazil. Extracts of citric biomass, coffee berry husks and coffee leaves severely affected by rust caused by Hemileia vastatrix, were evaluated against P. costarricensis. In an in vitro assay, aqueous extracts of rusted leaves and berry husks plus the commercial extracts based on citric biomass named Ecolife® and Agromil® were tested at various dilutions on the mycelial growth inhibition of P. costarricensis. In vivo, coffee seedlings maintained in glasshouse, were sprayed with these extracts seven days before inoculation of P. costarricensis. Only extracts from citric biomass had inhibitory effects on the fungus. In vivo, Ecolife® (5 ml/l), Agromil® (5 g/l) and the aqueous extract of rusted coffee leaves (dilution 1:6) reduced Phoma leaf spot. Both, Ecolife® and the extract of rusted coffee leaves were significantly more effective in reducing the area under the lesion progress curve when applied at lower doses, indicating a possible effect on the induction of resistance.



Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 154
Author(s):  
Barbara Ludwig Navarro ◽  
Raphael de Araújo Campos ◽  
Maria Cândida de Godoy Gasparoto ◽  
Andreas von Tiedemann

Northern Corn Leaf Blight (NCLB) is a fungal leaf disease in maize caused by Exserohilum turcicum. NCLB occurs worldwide, from tropical to temperate zones raising the question about plasticity of temperature adaptation of local isolates of the pathogen. Seven isolates of E. turcicum originating from South America and seven from Europe were compared for their response to temperature variations in vitro and in vivo between 15 and 30 °C. In vitro, isolates originating from Europe and South America significantly differed in mycelial growth rate at 30 °C and in sporulation at 25 °C and 30 °C. Aggressiveness of E. turcicum isolates was evaluated on three susceptible maize cultivars (maize lines B37, Sus1 and the German hybrid Niklas) under different day/night temperature regimes (15/10 °C, 20/15 °C, 25/20 °C, or 30/25 °C) with a photoperiod of 14 h. Aggressiveness, recorded as area under the disease progress curve (AUDPC), of South American isolates was higher than for European isolates at 15 °C, 20 °C and 25 °C, and for sporulation in vivo in all temperatures. In general, aggressiveness components were most influenced by temperature. Therefore, multivariate analysis was performed with aggressiveness component data at 30 °C, which expressed the highest number of variables with significant differences between isolate origins. According to their aggressiveness, European and South American isolates can be grouped separately, demonstrating that South American isolates are better adapted to higher temperatures and display a higher level of aggressiveness under similar conditions than European isolates from a cool climate. It is concluded that plasticity of temperature adaptation in E. turcicum populations is relatively large and allowed E. turcicum to follow the recent expansion of maize cultivation into cool climate zones in Europe. However, our data suggest that adaptation to higher temperature is likely to increase aggressiveness of NCLB on maize in cooler climate zones when experiencing further climate warming. This plasticity in adaptation to environmental conditions of E. turcicum may also hamper the success of breeding programs as it may decrease the durability of resistance.



2021 ◽  
Vol 10 (1) ◽  
pp. e1110110667
Author(s):  
Ivan Carlos Zorzzi ◽  
Mycheli Preuss da Cruz ◽  
Nean Locatelli Dalacosta ◽  
Janaína Bruzamarello ◽  
Álvaro Luiz Ghedin ◽  
...  

In recent years, it has been observed a significant expansion of the organic market. In this context, the main phytosanitary problem of soybean in the organic system is Asian rust (Phakopsora pachyrhizi), for which it is difficult to control, considering the restriction of products authorized for use in the organic system and the limitation of research related to this management system. The objective of this study was to evaluate the effect of alternative products on the germination of uredospores, on the severity of soybean rust on detached leaves and the control of the disease under greenhouse and field conditions. The alternative treatments were calcium silicate, lime sulphur, bordeaux mixture, and copper oxychloride. The variables analyzed were uredospores germination, disease severity, defoliation level, area under the disease progress curve (AUDPC), a thousand grain mass and productivity. The results obtained indicate that there is a possibility of using copper oxychloride to manage the Asian rust in organic production systems. Copper oxychloride had reduced the germination of uredospores and when evaluated under controlled conditions using detached leaves and greenhouse, it had reduced the severity of the disease. In field conditions, copper oxychloride at the doses of 588 and 882 g ha-1 reduced severity and AUDPC, in addition to increasing productivity at 1434 kg ha-1 in relation to the control. It is concluded that copper oxychloride can be used as a tool in the management of Asian rust in organic systems of soy production. 



2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hamza Bouanaka ◽  
Ines Bellil ◽  
Wahiba Harrat ◽  
Saoussene Boussaha ◽  
Abdelkader Benbelkacem ◽  
...  

Abstract Background Durum wheat (Triticum durum Desf.) is one of the most important cereals in the world. Unfortunately, the wheat plant is a target of several species of the genus Fusarium. This genus causes two serious diseases: fusarium crown rot (FCR) and fusarium head blight (FHB). The search for new indigenous strains of Trichoderma with a high potential for biocontrol against these two diseases was the purpose of this study. Results Biocontrol potential of 15 isolates of Trichoderma (T1 to T15), isolated from different rhizosphere soils and Algerian ecosystems, was evaluated against 4 strains of Fusarium culmorum (FC11, FC2, FC4, and FC20); the main causative agent of FCR and FHB. The efficacy of biological control by Trichoderma spp., evaluated by in vitro tests (direct and indirect confrontation), was confirmed by in vivo bioassays. The in vitro results showed a significant inhibition of mycelial growth of F. culmorum species than the control. The highest percentages of inhibition were obtained by T9, T12, and T14 isolates causing a maximum inhibition percentage of 81.81, 77.27, and 80.68%, respectively. T14 was selected for biocontrol in in vivo testing. A tube and pot experiments for FCR against F. culmorum showed that T14 decreased the disease severity with 50 and 63.63% reduction, respectively. FHB infection was significantly reduced by T14 in all durum wheat cultivars tested, where %AUDPC (area under the disease progress curve) reduction was 49.77, 43.43, 48.25, and 74.60% for Simeto, Waha, Bousselem, and Setifis genotypes, respectively. Yields also increased significantly for almost all cultivars. The antagonistic T14 was characterized based on molecular tools, using translation elongation factor1-alpha (TEF1-α) and internal transcribed spacers rDNA (ITS1). The results identified T14 as T. afroharzianum with accession numbers attributed by NCBI GenBank as MW171248 and MW159753. Conclusions Trichoderma afroharzianum, evaluated for the first time in Algeria as biocontrol agent, is a promising biocontrol approach against FCR and FHB.



Author(s):  
Marco Bonato ◽  
Francesca Corrà ◽  
Marta Bellio ◽  
Laura Guidolin ◽  
Laura Tallandini ◽  
...  

Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.



Sign in / Sign up

Export Citation Format

Share Document