scholarly journals PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field

Author(s):  
Marco Bonato ◽  
Francesca Corrà ◽  
Marta Bellio ◽  
Laura Guidolin ◽  
Laura Tallandini ◽  
...  

Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.

Author(s):  
Marco Bonato ◽  
Francesca Corrà ◽  
Marta Bellio ◽  
Laura Guidolin ◽  
Laura Tallandini ◽  
...  

Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.


2020 ◽  
Vol 22 (8) ◽  
Author(s):  
Barbara De Berardis ◽  
Magda Marchetti ◽  
Anna Risuglia ◽  
Federica Ietto ◽  
Carla Fanizza ◽  
...  

AbstractIn recent years, the introduction of innovative low-cost and large-scale processes for the synthesis of engineered nanoparticles with at least one dimension less than 100 nm has led to countless useful and extensive applications. In this context, gold nanoparticles stimulated a growing interest, due to their peculiar characteristics such as ease of synthesis, chemical stability and optical properties. This stirred the development of numerous applications especially in the biomedical field. Exposure of manufacturers and consumers to industrial products containing nanoparticles poses a potential risk to human health and the environment. Despite this, the precise mechanisms of nanomaterial toxicity have not yet been fully elucidated. It is well known that the three main routes of exposure to nanomaterials are by inhalation, ingestion and through the skin, with inhalation being the most common route of exposure to NPs in the workplace. To provide a complete picture of the impact of inhaled gold nanoparticles on human health, in this article, we review the current knowledge about the physico-chemical characteristics of this nanomaterial, in the size range of 1–100 nm, and its toxicity for pulmonary structures both in vitro and in vivo. Studies comparing the toxic effect of NPs larger than 100 nm (up to 250 nm) are also discussed.


2019 ◽  
Vol 33 (1) ◽  
pp. 67-70
Author(s):  
Miodrag Šmelcerović

The environment we live in is exposed to the increasing and increasing frequency of electromagnetic radiation in our homes and workplaces. In addition to natural radiation from the sun, radiation sources such as high-voltage transmission lines and powerful radar devices are sources of strong electric and magnetic fields. Increasing the number of portable communication and entertainment devices also increase the human body's exposure to additional electromagnetic radiation. This paper describes the most common effects of low-frequency non-ionizing electromagnetic fields (ELFs), which can cause biological changes, sometimes negative for human health. Different methods and approaches are used to investigate the effect of non-ionizing electromagnetic fields on biological systems. In vitro cell culture studies provide important insights into the underlying mechanisms of biological effects of low radiation levels. It is often not possible to deduce the functional response of a human organism to a particular biological effect. In vivo animal and human studies provide more convincing evidence of possible adverse health effects. There is a problem with the extrapolation of the results obtained from animal experiments to humans. Epidemiological studies provide the most direct information on the risk of adverse effects in humans. However, it is difficult to find good control groups that in all aspects (gender, similar life habits, etc.) fit the exposed groups. Care should be taken in interpreting the results of epidemiological studies, especially if low risk is found, as this may be due to other factors. Epidemiological studies are important for monitoring the impact of new technologies on human health [1].


Química Nova ◽  
2021 ◽  
Author(s):  
Jéssyca Medeiros ◽  
Raphael Acayaba ◽  
Cassiana Montagner

THE CHEMISTRY IN THE HUMAN HEALTH RISK ASSESSMENT DUE PESTICIDES EXPOSURE. Pesticides are widely used worldwide in urban and rural environments. Since most pesticides are not selective for target species the concern about possible impacts on human health has increased for the workers exposed to these substances (occupational exposure) and for the general population (environmental exposure). Epidemiological studies, in vivo and in vitro have associated several diseases with pesticide exposure, such as cancer, diabetes, Parkinson’s, and others. Therefore, chemistry plays an important role in evaluation of external (food and drinking water) and internal (human biomonitoring) exposure to pesticides through of analytical methodologies, for instance, chromatography coupled with mass spectrometry, proving to be an important complement in the evaluation of risks of pesticides in human health.


2021 ◽  
Vol 30 (159) ◽  
pp. 200242
Author(s):  
Thomas Bourdrel ◽  
Isabella Annesi-Maesano ◽  
Barrak Alahmad ◽  
Cara N. Maesano ◽  
Marie-Abèle Bind

Studies have pointed out that air pollution may be a contributing factor to the coronavirus disease 2019 (COVID-19) pandemic. However, the specific links between air pollution and severe acute respiratory syndrome-coronavirus-2 infection remain unclear. Here we provide evidence from in vitro, animal and human studies from the existing literature. Epidemiological investigations have related various air pollutants to COVID-19 morbidity and mortality at the population level, however, those studies suffer from several limitations. Air pollution may be linked to an increase in COVID-19 severity and lethality through its impact on chronic diseases, such as cardiopulmonary diseases and diabetes. Experimental studies have shown that exposure to air pollution leads to a decreased immune response, thus facilitating viral penetration and replication. Viruses may persist in air through complex interactions with particles and gases depending on: 1) chemical composition; 2) electric charges of particles; and 3) meteorological conditions such as relative humidity, ultraviolet (UV) radiation and temperature. In addition, by reducing UV radiation, air pollutants may promote viral persistence in air and reduce vitamin D synthesis. Further epidemiological studies are needed to better estimate the impact of air pollution on COVID-19. In vitro and in vivo studies are also strongly needed, in particular to more precisely explore the particle–virus interaction in air.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Patrice Marques ◽  
Laura Piqueras ◽  
Maria-Jesus Sanz

AbstractThe electronic cigarette (e-cigarette), for many considered as a safe alternative to conventional cigarettes, has revolutionised the tobacco industry in the last decades. In e-cigarettes, tobacco combustion is replaced by e-liquid heating, leading some manufacturers to propose that e-cigarettes have less harmful respiratory effects than tobacco consumption. Other innovative features such as the adjustment of nicotine content and the choice of pleasant flavours have won over many users. Nevertheless, the safety of e-cigarette consumption and its potential as a smoking cessation method remain controversial due to limited evidence. Moreover, it has been reported that the heating process itself can lead to the formation of new decomposition compounds of questionable toxicity. Numerous in vivo and in vitro studies have been performed to better understand the impact of these new inhalable compounds on human health. Results of toxicological analyses suggest that e-cigarettes can be safer than conventional cigarettes, although harmful effects from short-term e-cigarette use have been described. Worryingly, the potential long-term effects of e-cigarette consumption have been scarcely investigated. In this review, we take stock of the main findings in this field and their consequences for human health including coronavirus disease 2019 (COVID-19).


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2354
Author(s):  
Mohammad Mamunur Rashid ◽  
Petra Forte Tavčer ◽  
Brigita Tomšič

Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.


2019 ◽  
Vol 8 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Krzysztof Sawicki ◽  
Magdalena Czajka ◽  
Magdalena Matysiak-Kucharek ◽  
Berta Fal ◽  
Bartłomiej Drop ◽  
...  

Abstract Metallic nanoparticles due to their small size and unique physico-chemical characteristics have found excellent applications in various branches of industry and medicine. Therefore, for many years a growing interest has been observed among the scientific community in the improvement of our understanding of the impact of nanoparticles on the living organisms, especially on humans. Considering the delicate structure of the central nervous systemit is one of the organs most vulnerable to the adverse effects of metallic nanoparticles. For that reason, it is important to identify the modes of exposure and understand the mechanisms of the effect of nanoparticles on neuronal tissue. In this review, an attempt is undertaken to present current knowledge about metallic nanoparticles neurotoxicity based on the selected scientific publications. The route of entry of nanoparticles is described, as well as their distribution, penetration through the cell membrane and the blood-brain barrier. In addition, a study on the neurotoxicity in vitro and in vivo is presented, as well as some of the mechanisms that may be responsible for the negative effects of metallic nanoparticles on the central nervous system. Graphical abstract: This review summarizes the current knowledge on the toxicity of metallic NPs in the brain and central nervous system of the higher vertebrates.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 373
Author(s):  
Carolyn W. Kinkade ◽  
Zorimar Rivera-Núñez ◽  
Ludwik Gorcyzca ◽  
Lauren M. Aleksunes ◽  
Emily S. Barrett

Contamination of the world’s food supply and animal feed with mycotoxins is a growing concern as global temperatures rise and promote the growth of fungus. Zearalenone (ZEN), an estrogenic mycotoxin produced by Fusarium fungi, is a common contaminant of cereal grains and has also been detected at lower levels in meat, milk, and spices. ZEN’s synthetic derivative, zeranol, is used as a growth promoter in United States (US) and Canadian beef production. Experimental research suggests that ZEN and zeranol disrupt the endocrine and reproductive systems, leading to infertility, polycystic ovarian syndrome-like phenotypes, pregnancy loss, and low birth weight. With widespread human dietary exposure and growing experimental evidence of endocrine-disrupting properties, a comprehensive review of the impact of ZEN, zeranol, and their metabolites on the female reproductive system is warranted. The objective of this systematic review was to summarize the in vitro, in vivo, and epidemiological literature and evaluate the potential impact of ZEN, zeranol, and their metabolites (commonly referred to as mycoestrogens) on female reproductive outcomes. We conducted a systematic review (PROSPERO registration CRD42020166469) of the literature (2000–2020) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data sources were primary literature published in English obtained from searching PubMed, Web of Science, and Scopus. The ToxR tool was applied to assess risk of bias. In vitro and in vivo studies (n = 104) were identified and, overall, evidence consistently supported adverse effects of mycoestrogens on physiological processes, organs, and tissues associated with female reproduction. In non-pregnant animals, mycoestrogens alter follicular profiles in the ovary, disrupt estrus cycling, and increase myometrium thickness. Furthermore, during pregnancy, mycoestrogen exposure contributes to placental hemorrhage, stillbirth, and impaired fetal growth. No epidemiological studies fitting the inclusion criteria were identified.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

Sign in / Sign up

Export Citation Format

Share Document