scholarly journals Ecophysiological response of Eucalyptus camaldulensis to dust and lead pollution

2021 ◽  
Vol 51 ◽  
Author(s):  
Muhammad Farrakh Nawaz ◽  
Muhammad Haroon U Rashid ◽  
Muhammad Zubair Arif ◽  
Muhammad Azeem Sabir ◽  
Taimoor Hassan Farooq ◽  
...  

Background: Air and soil pollution are among the main concerns in urban areas worldwide, and dust and heavy metals are major contributors to environmental pollution. Lead (Pb) is a highly toxic heavy metal that badly affects human health as well as plant's survival and growth. Vegetation can play an important role in ameliorating the effects of these pollutants. Eucalyptus camaldulensis is well adapted and cultivated throughout a wide range of urban environments from temperate to tropical climates. Methods: A 90 days experiment was conducted to investigate the effects of lead (Pb) and dust pollution on the growth performance of young E. camaldulensis plants. Four months old seedlings were treated with a factorial combinations of Pb (0,10 and 20 mg/l applied in irrigation) and dust levels (0,5 and 10 g applied on foliage). Results: All morphological traits (root length, shoot length, stem diameter) and biomass (root and shoot, fresh and dry mass) of E. camaldulensis were significantly reduced when exposed to higher Pb and dust levels. The highest Pb treatments exhibited greater Pb accumulation in plant roots (23.54 ± 1.61 mg/kg), shoots (15.53 ± 1.98 mg/kg), and leaves (13.89 ± 1.49 mg/kg). Dust load on leaves was greater (72.78 ± 8.1 mg/cm2) for those treatments with higher dust and Pb additions compared to the control (16.11 ± 2.0 mg/cm2). Chlorophyll content was greater at the start of the experiment (68.78 ± 0.74 mg.g-1FW) and progressively decreased over time consistently  with the increase of Pb and dust levels applied. Conclusions: The results of the experiment, suggest that E. camaldulensis could be successfully grown in minimum to moderate Pb and dust polluted urban environments.

2012 ◽  
Vol 51 (2) ◽  
pp. 219-241 ◽  
Author(s):  
Thomas Loridan ◽  
C. S. B. Grimmond

AbstractA better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.


2016 ◽  
Vol 2 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Savannah Daoud-Opit ◽  
Darryl N. Jones

Abstract 1. The formation of large communal roosts is a conspicuous phenomenon associated with a wide range of bird species successfully exploiting urban environments. In many Australian cities, the abundance of the Rainbow Lorikeet (Trichoglossus haematodus), a native parrot, has increased markedly in recent decades, with the species roosting in very large numbers within suburban sites. These roosting locations are noisy and cause significant fouling of the land beneath, resulting in conflict with humans. 2. We investigated the selection of roosting sites in this species in Brisbane, Australia, by comparing characteristics of both the general sites of these roosts as well as individual trees used within roosting sites and trees that were avoided. 3. Lorikeets used a wide variety of tree types for roosting but demonstrated a clear preference for clumped trees within sparsely treed areas that received significantly more artificial light at night than otherwise suitable sites and trees nearby. 4. These features of roosting sites may enhance the detection of nocturnal predators by Rainbow Lorikeets, suggesting a potential positive impact of anthropogenic lighting. Our findings provide valuable insights into the management of roost-related conflicts in urban areas. We encourage further investigations into the possible benefits of artificial light.


2021 ◽  
Author(s):  
Irini Tsiodra ◽  
Georgios Grivas ◽  
Kalliopi Tavernaraki ◽  
Aikaterini Bougiatioti ◽  
Maria Apostolaki ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants in fine particulate matter (PM) long known to have mutagenic and carcinogenic effects, but much is unknown about the importance of local and remote sources to PAH levels observed in population-dense urban environments. A year-long sampling campaign in Athens, Greece, where more than 150 samples were analyzed for 31 PAHs and a wide range of chemical markers were used in combination with Positive Matrix Factorization (PMF) to constrain the temporal variability, sources and carcinogenic risk associated with PAHs. We find that biomass burning (BB), a source mostly effective during wintertime intense pollution events (observed for 18 % of measurement days in 2017), lead to wintertime PAH levels 7 times higher than in other seasons and was responsible for annual mean PAH concentrations (31 %) comparable to those from diesel/oil (33 %) and gasoline (29 %) sources. The contribution of non-local sources, although limited on an annual basis (7 %), was increased during summer, becoming comparable to that of local sources combined. The fraction of PAHs associated with BB is linked to increased health risk compared to the other sources, accounting for almost half the annual carcinogenic potential of PAHs (43 %). This can result in a larger number of excess cancer cases due to BB-related high PM levels and urges immediate action to reduce residential BB emissions in urban areas facing similar issues.


2019 ◽  
Vol 11 (20) ◽  
pp. 2383 ◽  
Author(s):  
Giovanni Sanesi ◽  
Vincenzo Giannico ◽  
Mario Elia ◽  
Raffaele Lafortezza

Urban forests and green infrastructures at large are of critical importance for contemporary cities as they provide a wide range of ecosystem services (ESS) that enhance the quality of life of urban dwellers. Remote sensing technologies have greatly contributed to assessing and mapping the spatial distribution of ESS in urban areas, although more research is needed given the availability of new sensors from multiple satellites and platforms and the particular characteristics of urban environments (e.g., high heterogeneity). This Special Issue hosts papers focusing on the temporal and spatial dynamics of urban forests with special attention given to the most recent remote sensing technologies as well as advanced methods for processing geospatial data and extracting meaningful information.


2021 ◽  
Vol 21 (23) ◽  
pp. 17865-17883
Author(s):  
Irini Tsiodra ◽  
Georgios Grivas ◽  
Kalliopi Tavernaraki ◽  
Aikaterini Bougiatioti ◽  
Maria Apostolaki ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants in fine particulate matter (PM) long known to have mutagenic and carcinogenic effects, but much is unknown about the importance of local and remote sources for PAH levels observed in population-dense urban environments. A year-long sampling campaign in Athens, Greece, where more than 150 samples were analyzed for 31 PAHs and a wide range of chemical markers, was combined with positive matrix factorization (PMF) to constrain the temporal variability, sources, and carcinogenic risk associated with PAHs. It was found that biomass burning (BB), a source mostly present during wintertime intense pollution events (observed for 18 % of measurement days in 2017), led to wintertime PAH levels that were 7 times higher than in other seasons and was as important for annual mean PAH concentrations (31 %) as diesel and oil (33 %) and gasoline (29 %) sources. The contribution of non-local sources, although limited on an annual basis (7 %), increased during summer, becoming comparable to that of local sources combined. The fraction of PAHs (12 members that were included in the PMF analysis) that was associated with BB was also linked to increased health risk compared to the other sources, accounting for almost half the annual PAH carcinogenic potential (43 %). This can result in a large number of excess cancer cases due to BB-related high PM levels and urges immediate action to reduce residential BB emissions in urban areas facing similar issues.


2021 ◽  
Author(s):  
Alby Duarte Rocha ◽  
Stenka Vulova ◽  
Christiaan van der Tol ◽  
Michael Förster ◽  
Birgit Kleinschmit 

<div><span>Evapotranspiration (ET) is an essential variable to characterise the water balance and urban heat island effect. As a combination of soil evaporation and plant transpiration, ET is highly dependent on the land cover and its surface properties. Most of the well-established physical-based models such as the ones derived from the Penman-Monteith equation focus on the atmospheric interfaces (e.g. radiation, temperature and wind speed), lacking information about the land surface. The model Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) can account for a wide range of surface-atmosphere interactions to estimate ET. However, like the majority of modelling approaches to estimate ET, SCOPE assumes a homogeneous vegetated landscape. Urban environments are highly fragmented, presenting a mix of pervious surfaces and impervious anthropogenic elements. However, information derived from high-resolution remote sensing (RS) and GIS to differentiate land surfaces is often available for medium and large cities. In this study, we analysed two urban sites with different levels of vegetation cover and imperviousness located in Berlin, Germany, both equipped with eddy flux towers. GIS data describing land surface properties were used to correct the prediction bias caused by the assumption of homogeneous vegetation by physical-based models</span><span>.</span><span> The correction factor increased the model accuracy significantly, reducing the relative bias of the SCOPE model using RS data from 0.74 to -0.001 and 2.20 to -0.13 for the two sites, respectively. RMSE was also considerably reduced in the two sites, from 0.061 to 0.026 and 0.100 to 0.021. At the same time, the coefficient of determination (R</span><span><sup>2</sup></span><span>) remained similar after the correction, 0.82 and 0.47 for the two sites. This study presents a novel method to estimate intraurban hourly ET using publicly available RS and meteorological data independent from the flux tower measurements. The presented method can support actions to mitigate climate change in urban areas, where the majority of the world population lives.</span></div>


2021 ◽  
Author(s):  
Pam Hazelton ◽  
Brian Murphy

With an ever-increasing proportion of the world’s population living in cities, soil properties such as salinity, acidity, water retention, erosion and pollution are becoming more significant in urban areas. While these are known issues for agriculture and forestry, as urban development increases, it is essential to recognise the potential of soil properties to create problems for the environment as well as structural concerns for buildings and other engineering works. Understanding Soils in Urban Environments explains how urban soils develop, change and erode. It describes their physical and chemical properties with a focus on specific soil problems that cause environmental damage, such as acid sulfate soils, and also affect the integrity of engineering structural works. This fully revised second edition addresses contemporary issues, including an increase in the use of green roofs and urban green space as well as manufactured soils in a variety of urban environments. Understanding Soils in Urban Environments provides a concise introduction to all aspects of soils in urban environments and will be extremely useful to students in a wide range of disciplines, from soil science and urban forestry and horticulture, to planning, engineering, construction and land remediation, as well as to engineers, builders, landscape architects, ecologists, planners and developers.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Author(s):  
Sigit Arifwidodo ◽  
Orana Chandrasiri

Public Park is considered one of the essential settings for physical activity, especially in urban areas. Parks support physical activity through their accessibility, their provision to facilitate active pursuits; their capacity to provide opportunities to a wide range of users; and their semi-permanent nature. The paper explores the design intervention assessment of Benchakitti Park, which serves as the pilot project for active park and showcase during the past ISPAH 2016 conference. The objective of the paper is to understand the health and well-being benefits of an urban park in increasing PA levels of urban population and promoting a healthy and active lifestyle. Keywords: Public park; physical activity; urban landscape design; public health; SOPARC


Sign in / Sign up

Export Citation Format

Share Document