Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s-2009)

2016 ◽  
Vol 551 ◽  
pp. 13-30 ◽  
Author(s):  
A Singer ◽  
U Schückel ◽  
M Beck ◽  
O Bleich ◽  
HJ Brumsack ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Julia Meyer ◽  
Ingrid Kröncke ◽  
Alexander Bartholomä ◽  
Mathias Heckroth ◽  
Gregor Scheiffarth

The cockle Cerastoderma edule is one of the most common macrofauna species in the Wadden Sea areas of the North Sea. Cockle population dynamics are influenced by various abiotic and biotic factors such as temperature, food availability, and inter- and intraspecific competition. Cockles play an important role in the food web of the Wadden Sea, for instance, large shellfish-eating birds, such as oystercatchers and common eiders, use the cockle C. edule and the blue mussel Mytilus edulis as a main diet component. However, the populations of shellfish-eating bird species have been declining dramatically across the Wadden Sea since the beginning of the 21st century. While there are detailed monitoring programs in blue mussels due to commercial interests, little information is known about the stocks and long-term dynamics of cockles in the German Wadden Sea. To fill this gap, in 2005 a local conservation society (“Der Mellumrat e.V.”) initiated a study to sample cockles at one transect per year south of the island of Mellum, which was extended by 5 more transects in 2011. In addition to the spatial analysis, we analyzed the long-term variability in cockle population dynamics. Min/max autocorrelation factor analysis (MAFA) revealed a decline in cockle abundance, while no clear length trends were found. Canonical and spearman correlation analyses exposed significant correlations between cockle abundance and length and chlorophyll a, mussel bank area as well as oystercatcher and common eider populations. This study clearly shows that there is an urgent need for comprehensive time series of cockle data to analyze and explain ecological long-term changes in cockle population dynamics in relation to environmental changes and to point out how parts of the Wadden Sea food web, such as shellfish-eating birds are affected by these changes.


Hydrobiologia ◽  
2018 ◽  
Vol 845 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Sophie Delerue-Ricard ◽  
Hanna Stynen ◽  
Léo Barbut ◽  
Fabien Morat ◽  
Kelig Mahé ◽  
...  

2013 ◽  
Vol 10 (3) ◽  
pp. 1835-1847 ◽  
Author(s):  
U. Riebesell ◽  
J. Czerny ◽  
K. von Bröckel ◽  
T. Boxhammer ◽  
J. Büdenbender ◽  
...  

Abstract. One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between small-scale laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (∼50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78°56.2′ N, 11°53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air–sea exchange of climate-relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study.


1968 ◽  
Vol 16 (4) ◽  
pp. 264-274
Author(s):  
D.T. Edwards

Two very different cases of small-scale farm development in the Commonwealth Caribbean are reviewed. One is Jamaican small farming, which responded little to considerable efforts made for its improvement by the Government agencies. The other is market gardening at Aranjuez, Trinidad where production grew at an extremely rapid rate in the face of intense and antagonistic competition between the market gardeners and without significant direct assistance by official agencies. The conclusions include a number of possible strategies for farm development, comprising individual or collective persuasion, coercion, creation of new farms, and environmental changes. T. A. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1992 ◽  
Vol 8 (3) ◽  
pp. 229-239
Author(s):  
Maj-Lis Follér

Two different health projects are evaluated in this paper. The Koster Health project taking place at the Koster Islands in Sweden and the Ametra project going on among the Shipibo-Conibo in Peru. Both projects focus more on the determinants of health than on sickness and more on the individual's subjective feeling of illness than on the biomedically "objectively" recognizable disease. "Mobilization" and "responsibility"for the individual's own health are central concepts in both projects. In the theoretical part of the paper a human ecological perspective is suggested to analyse the interaction between human health and environmental changes. The author emphasizes the importance of interdisciplinary research when evaluating how the external determinants from the natural and social environment affect human beings and health. The human ecological approach is seen as a complement to the biomedical research. Health and disease are two poles in a continuum. In a pluralistic society we should struggle towards the pole of health.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 386
Author(s):  
Max Toepfer ◽  
Alejandra Padilla ◽  
Kevin Ponto ◽  
Andrea H Mason ◽  
Kristen A Pickett

Quantification of gait changes in response to altered environmental stimuli may allow for improved understanding of the mechanisms that influence gait changes and fall occurrence in older adults. This study explored how systematic manipulation of a single dimension of one’s environment affects spatiotemporal gait parameters. A total of 20 older adult participants walked at a self-selected pace in a constructed research hallway featuring a mobile wall, which allowed manipulation of the hallway width between three conditions: 1.14 m, 1.31 m, and 1.48 m. Spatiotemporal data from participants’ walks were captured using an instrumented GAITRite mat. A repeated measures ANOVA revealed older adults spent significantly more time in double support in the narrowest hallway width compared to the widest, but did not significantly alter other spatiotemporal measures. Small-scale manipulations of a single dimension of the environment led to subtle, yet in some cases significant changes in gait, suggesting that small or even imperceptible environmental changes may contribute to altered gait patterns for older adults.


Land ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 190 ◽  
Author(s):  
Christopher Poeplau ◽  
Julia Schroeder ◽  
Ed Gregorich ◽  
Irina Kurganova

Climate change may increase the importance of agriculture in the global Circumpolar North with potentially critical implications for pristine northern ecosystems and global biogeochemical cycles. With this in mind, a global online survey was conducted to understand northern agriculture and farmers’ perspective on environmental change north of 60° N. In the obtained dataset with 67 valid answers, Alaska and the Canadian territories were dominated by small-scale vegetable, herbs, hay, and flower farms; the Atlantic Islands were dominated by sheep farms; and Fennoscandia was dominated by cereal farming. In Alaska and Canada, farmers had mostly immigrated with hardly any background in farming, while farmers in Fennoscandia and on the Atlantic Islands mostly continued family traditions. Accordingly, the average time since conversion from native land was 28 ± 28 and 25 ± 12 years in Alaska and Canada, respectively, but 301 ± 291 and 255 ± 155 years on the Atlantic Islands and in Fennoscandia, respectively, revealing that American northern agriculture is expanding. Climate change was observed by 84% of all farmers, of which 67% have already started adapting their farming practices, by introducing new varieties or altering timings. Fourteen farmers reported permafrost on their land, with 50% observing more shallow permafrost on uncultivated land than on cultivated land. Cultivation might thus accelerate permafrost thawing, potentially with associated consequences for biogeochemical cycles and greenhouse gas emissions. About 87% of the surveyed farmers produced for the local market, reducing emissions of food transport. The dynamics of northern land-use change and agriculture with associated environmental changes should be closely monitored. The dataset is available for further investigations.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3055
Author(s):  
Olivier Pieters ◽  
Tom De Swaef ◽  
Peter Lootens ◽  
Michiel Stock ◽  
Isabel Roldán-Ruiz ◽  
...  

The study of the dynamic responses of plants to short-term environmental changes is becoming increasingly important in basic plant science, phenotyping, breeding, crop management, and modelling. These short-term variations are crucial in plant adaptation to new environments and, consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging solutions are necessary to advance these fields and complement existing sensing platforms such as high-throughput phenotyping. However, current data logging and sensing platforms do not meet the requirements to monitor these responses. Therefore, a new modular data logging platform was designed, named Gloxinia. Different sensor boards are interconnected depending upon the needs, with the potential to scale to hundreds of sensors in a distributed sensor system. To demonstrate the architecture, two sensor boards were designed—one for single-ended measurements and one for lock-in amplifier based measurements, named Sylvatica and Planalta, respectively. To evaluate the performance of the system in small setups, a small-scale trial was conducted in a growth chamber. Expected plant dynamics were successfully captured, indicating proper operation of the system. Though a large scale trial was not performed, we expect the system to scale very well to larger setups. Additionally, the platform is open-source, enabling other users to easily build upon our work and perform application-specific optimisations.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 614
Author(s):  
Andrzej Czerniak ◽  
Sylwester Grajewski ◽  
Anna Krysztofiak-Kaniewska ◽  
Ewa E. Kurowska ◽  
Bernard Okoński ◽  
...  

The forest cover in Poland reaches almost 30% of the country’s area. Polish forests are characterized by high biodiversity. Unfortunately, in recent years, the forests of Central Europe have been affected by climate change problems, in particular meteorological drought. In Poland, even those stands which consist of species that were widely recognized as drought tolerant and easily adaptable to environmental changes are beginning to die. The article presents engineering methods applicable to forest environment protection, largely developed at the University of Life Sciences in Poznań and implemented by the State Forests—National Forest Holding in Poland, to minimize the effects of drought. Among the issues raised are ways to protect forests against fires, modern technologies for fire road surface construction and small-scale water retention in forests. A comprehensive solution to problems related to progressive drought is a must. Scientists and foresters are observing the dying of large areas of stands and, at the same time, intensification of wildlife migration due to the search for new habitats as a consequence of the drought. Therefore, the issue of building animal crossings during the current dynamic expansion of the road network in Poland has also been presented in the paper. Another subject pointed to in the text is forest tourism. Forests provide opportunities for recreation and rest to society. However, the increasing tourist pressure in some regions may cause adverse environmental effects. Finally, the paper shows some examples of supporting forest environment protection using remote sensing techniques. Generally, the aim of the paper is to present experiences and comprehensive solutions implemented in Poland.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4162
Author(s):  
Ma ◽  
Huang ◽  
Li ◽  
Huang ◽  
Ma ◽  
...  

environmental perception technology based onWiFi, and some state-of-the-art techniques haveemerged. The wide application of small-scale motion recognition has aroused people’s concern.Handwritten letter is a kind of small scale motion, and the recognition for small-scale motion basedon WiFi has two characteristics. Small-scale action has little impact on WiFi signals changes inthe environment. The writing trajectories of certain uppercase letters are the same as the writingtrajectories of their corresponding lowercase letters, but they are different in size. These characteristicsbring challenges to small-scale motion recognition. The system for recognizing small-scale motion inmultiple classes with high accuracy urgently needs to be studied. Therefore, we propose MCSM-Wri,a device-free handwritten letter recognition system using WiFi, which leverages channel stateinformation (CSI) values extracted from WiFi packets to recognize handwritten letters, includinguppercase letters and lowercase letters. Firstly, we conducted data preproccessing to provide moreabundant information for recognition. Secondly, we proposed a ten-layers convolutional neuralnetwork (CNN) to solve the problem of the poor recognition due to small impact of small-scaleactions on environmental changes, and it also can solve the problem of identifying actions with thesame trajectory and different sizes by virtue of its multi-scale characteristics. Finally, we collected6240 instances for 52 kinds of handwritten letters from 6 volunteers. There are 3120 instances fromthe lab and 3120 instances are from the utility room. Using 10-fold cross-validation, the accuracyof MCSM-Wri is 95.31%, 96.68%, and 97.70% for the lab, the utility room, and the lab+utility room,respectively. Compared with Wi-Wri and SignFi, we increased the accuracy from 8.96% to 18.13% forrecognizing handwritten letters.


Sign in / Sign up

Export Citation Format

Share Document