scholarly journals THE IMPORTANCE OF PUBLIC-FUNDED CHARGING STATIONS TO INCREASE THE RATE OF ELECTRIC VEHICLE (EV) OWNERSHIP IN INDONESIA

2021 ◽  
Vol 22 (1) ◽  
pp. 78-91
Author(s):  
Faiz Rafiza Ahmadani ◽  
Rafi Aquary

The current surplus of electricity across Indonesia has further underlined many opportunities to optimize the usage of electricity in many sectors; including on the issue of Electric Vehicle (EV) ownership within the country. According to the government’s projection, the state-owned enterprise (SOE) of PLN would construct 254.181 units of charging stations by 2030. However, there exists the problem of ‘chicken and egg’; in which more EV charging stations would be required to spur EV sales and vice versa. In addition to that, the lack of charging stations has also led to the disinterest from the public to purchase EVs due to fear of range anxiety. Hence, this paper is written to address the importance of publicly funded charging stations in Indonesia to help cultivate EV development within the country. Not only that, since Indonesia is the largest member country of ASEAN, it could be the ‘trendsetter’ of this issue in the region and would have the upper hand position as an early adopter. Our hypotheses suggest that not only publicly funded the development of charging stations would be beneficial to the future-buyer of EV, but also for the government itself.     Keywords: Electric Vehicle, Charging Station, Public-Funded, Range Anxiety   

Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2018 ◽  
Vol 1 ◽  
pp. 1-6 ◽  
Author(s):  
Yongqin Zhang ◽  
Kory Iman

Fuel-based transportation is one of the major contributors to poor air quality in the United States. Electric Vehicle (EV) is potentially the cleanest transportation technology to our environment. This research developed a spatial suitability model to identify optimal geographic locations for installing EV charging stations for travelling public. The model takes into account a variety of positive and negative factors to identify prime locations for installing EV charging stations in Wasatch Front, Utah, where automobile emission causes severe air pollution due to atmospheric inversion condition near the valley floor. A walkable factor grid was created to store index scores from input factor layers to determine prime locations. 27 input factors including land use, demographics, employment centers etc. were analyzed. Each factor layer was analyzed to produce a summary statistic table to determine the site suitability. Potential locations that exhibit high EV charging usage were identified and scored. A hot spot map was created to demonstrate high, moderate, and low suitability areas for installing EV charging stations. A spatially well distributed EV charging system was then developed, aiming to reduce “range anxiety” from traveling public. This spatial methodology addresses the complex problem of locating and establishing a robust EV charging station infrastructure for decision makers to build a clean transportation infrastructure, and eventually improve environment pollution.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2820 ◽  
Author(s):  
Hui Sun ◽  
Peng Yuan ◽  
Zhuoning Sun ◽  
Shubo Hu ◽  
Feixiang Peng ◽  
...  

With the popularization of electric vehicles, free charging behaviors of electric vehicle owners can lead to uncertainty about charging in both time and space. A time-spatial dispatching strategy for the distribution network guided by electric vehicle charging fees is proposed in this paper, which aims to solve the network congestion problem caused by the unrestrained and free charging behaviors of large numbers of electric vehicles. In this strategy, congestion severity of different lines is analyzed and the relationship between the congested lines and the charging stations is clarified. A price elastic matrix is introduced to reflect the degree of owners’ response to the charging prices. A pricing scheme for optimal real-time charging fees for multiple charging stations is designed according to the congestion severity of the lines and the charging power of the related charging stations. Charging price at different charging station at different time is different, it can influence the charging behaviors of vehicle owners. The simulation results confirmed that the proposed congestion dispatching strategy considers the earnings of the operators, charging cost to the owners and the satisfaction of the owners. Moreover, the strategy can influence owners to make judicious charging plans that help to solve congestion problems in the network and improve the safety and economy of the power grid.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1650 ◽  
Author(s):  
Bong-Gi Choi ◽  
Byeong-Chan Oh ◽  
Sungyun Choi ◽  
Sung-Yul Kim

Establishing electric vehicle supply equipment (EVSE) to keep up with the increasing number of electric vehicles (EVs) is the most realistic and direct means of promoting their spread. Using traffic data collected in one area; we estimated the EV charging demand and selected priority fast chargers; ranging from high to low charging demand. A queueing model was used to calculate the number of fast chargers required in the study area. Comparison of the existing distribution of fast chargers with that suggested by the traffic load eliminating method demonstrated the validity of our traffic-based location approach.


2021 ◽  
Vol 4 (3) ◽  
pp. 63
Author(s):  
Sherif A. Zaid ◽  
Hani Albalawi ◽  
Khaled S. Alatawi ◽  
Hassan W. El-Rab ◽  
Mohamed E. El-Shimy ◽  
...  

The electric vehicle (EV) is one of the most important and common parts of modern life. Recently, EVs have undergone a big development thanks to the advantages of high efficiency, negligible pollution, low maintenance, and low noise. Charging stations are very important and mandatory services for electric vehicles. Nevertheless, they cause high stress on the electric utility grid. Therefore, renewable energy-sourced charging stations have been introduced. They improve the environmental issues of the electric vehicles and support remote area operation. This paper proposes the application of fuzzy control to an isolated charging station supplied by photovoltaic power. The system is modeled and simulated using Matlab/Simulink. The simulation results indicate that the disturbances in the solar insolation do not affect the electric vehicle charging process at all. Moreover, the controller perfectly manages the stored energy to compensate for the solar energy variations. Additionally, the system response with the fuzzy controller is compared to that with the PI controller. The comparison shows that the fuzzy controller provides an improved response.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2021 ◽  
Author(s):  
Manjush Ganiger ◽  
Maneesh Pandey ◽  
Rahul Wagh ◽  
Rakesh Govindasamy

Abstract Transition towards electric vehicles (EV) is the key enabler for fighting against climate change as well as for sustainable future. However, to build more confidence on EV transition, availability of charging infrastructure is key. One of the important criterions for vehicle charging station is to have a stable electricity source that can meet varying charging demand. The paper attempts to explore the eco-system of self-sustainable and quasi-renewable charging infrastructure. This paper outlines a circular economy model for EV charging station (EVCS) using a gas turbine from the Baker Hughes™ portfolio. The proposed solution includes Solid Oxide Electrolyzer and a carbon capture unit, integrated to the gas turbine. This integrated system is decarbonized using the hydrogen generated by the electrolysis unit. Proposed solution on EVCS can charge about 1500 EVs in half a day of operation (50% power split). Solution is lucrative and has attractive return on investment. The solution here is having high power density, compared to the actual renewable energy dependent charging stations. The solution is flexible to incorporate Power-to-X conversions. Modular nature of the solution makes it easy to implement in city limits as well as in remote locations, along the highways, where grid availability can be challenging.


2013 ◽  
Vol 389 ◽  
pp. 1014-1018 ◽  
Author(s):  
Lei Tao ◽  
Xing Tong ◽  
Xin He ◽  
Hui Xu ◽  
Zhong Fu Tan

Whether charging the electric vehicle is convenient has an important impact on the promotion of electric vehicles, the construction of charging stations should minimize the total cost of charging the electric vehicles. In order to select the optimal building addresses of charging stations, this paper proposed a site selection method based on the Floyd shortest path algorithm. This method uses the analysis of the shortest charging path between the electric car rallying points by shortest path method, and combines the assumption of charging cost and the number of charging stations in order to minimize the total charging distance in the region. Through the example analysis, this method can select one or more optimal construction sites of charging stations in the regional networks quickly and conveniently, so that the minimum total charging distance can be got and the optimal economic benefits can be achieved, too.


2013 ◽  
Vol 291-294 ◽  
pp. 2362-2365
Author(s):  
Bo Ye ◽  
Zhang Zhou He ◽  
Guo Meng Huang ◽  
Xue Song He ◽  
Hui Quan Li

With the development of electric vehicle industry, it is necessary to construct more electric vehicle charging stations to promote the popularization of electric vehicles. As photovoltaic generation owns flexible installing, convenient power supplying, and environmental protecting characteristics, it is suitable for providing power for electric vehicle charging stations and reducing a network loads. After analyzed electric vehicle charging demand, this paper proposed the designing concept of the electric system for the photovoltaic generation mix charging station, which was based on the battery charging and discharging characteristics as well as its usage. Then, the paper provided a selection of electric equipments for the charging station and an electric wiring diagram after designing the electric system. This study and design may help for promoting construction of electric vehicle charging stations, and development and popularization of electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document