scholarly journals Resveratrol and Related Compounds as Antioxidants With an Allosteric Mechanism of Action in Epigenetic Drug Targets

2013 ◽  
pp. 1-13 ◽  
Author(s):  
H. FARGHALI ◽  
N. KUTINOVÁ CANOVÁ ◽  
N. LEKIĆ

The present review is intended to focus on naturally occurring cytoprotective agents such as resveratrol (trans-3,4’,5-trihydroxystilbene) and other related compounds, probably with similar molecular mechanisms of action and high capacity to find applications in medical fields. Several physiological aspects have been ascribed to resveratrol and similar compounds. Resveratrol, among others, has been recently described as a silent information regulator T1 (SIRT1) activator that increases AMP-activated protein kinase (AMPK) phosphorylation and reduces the oxidative damage biomarkers during aging in laboratory settings. The reports on resveratrol and other SIRT1 activators from various sources are encouraging. The pharmacological strategies for modulation of sirtuins by small molecules through allosteric mechanisms should gain a greater momentum including human research. Resveratrol and resveratrol-like molecules seem to fulfill the requirement of a new horizon in drug research since these molecules cover a growing research means as antioxidants with allosteric mechanism in epigenetic drug targets. However, one should keep in mind the challenges of extrapolation of basic research into clinical results. Overall, the issue of sirtuins in biology and disease provides an insight on therapeutic potentials of sirtuin-based therapeutics and demonstrates the high complexity of drug-targeting these modalities for human applications.

2016 ◽  
Vol 29 (4) ◽  
pp. 562-571 ◽  
Author(s):  
Chethan Gejjalagere Honnappa ◽  
Unnikrishnan Mazhuvancherry Kesavan

Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Damian Gajecki ◽  
Jakub Gawrys ◽  
Ewa Szahidewicz-Krupska ◽  
Adrian Doroszko

Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.


2016 ◽  
Vol 22 (999) ◽  
pp. 1-1
Author(s):  
Karmen Stankov ◽  
Sunčica Stankov ◽  
Jasmina Katanić

2019 ◽  
Vol 19 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Tianyi Zhao ◽  
Donghua Wang ◽  
Yang Hu ◽  
Ningyi Zhang ◽  
Tianyi Zang ◽  
...  

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.


2019 ◽  
Vol 104 (11) ◽  
pp. 5372-5381 ◽  
Author(s):  
Nigel K Stepto ◽  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Kirsty A Walters ◽  
Raymond J Rodgers

Abstract Context Polycystic ovary syndrome (PCOS) is a common endocrine condition affecting 8% to 13% of women across the lifespan. PCOS affects reproductive, metabolic, and mental health, generating a considerable health burden. Advances in treatment of women with PCOS has been hampered by evolving diagnostic criteria and poor recognition by clinicians. This has resulted in limited clinical and basic research. In this study, we provide insights into the current and future research on the metabolic features of PCOS, specifically as they relate to PCOS-specific insulin resistance (IR), that may affect the most metabolically active tissue, skeletal muscle. Current Knowledge PCOS is a highly heritable condition, yet it is phenotypically heterogeneous in both reproductive and metabolic features. Human studies thus far have not identified molecular mechanisms of PCOS-specific IR in skeletal muscle. However, recent research has provided new insights that implicate energy-sensing pathways regulated via epigenomic and resultant transcriptomic changes. Animal models, while in existence, have been underused in exploring molecular mechanisms of IR in PCOS and specifically in skeletal muscle. Future Directions Based on the latest evidence synthesis and technologies, researchers exploring molecular mechanisms of IR in PCOS, specifically in muscle, will likely need to generate new hypothesis to be tested in human and animal studies. Conclusion Investigations to elucidate the molecular mechanisms driving IR in PCOS are in their early stages, yet remarkable advances have been made in skeletal muscle. Overall, investigations have thus far created more questions than answers, which provide new opportunities to study complex endocrine conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Wu ◽  
Xianjing Hu ◽  
Liyan Song ◽  
Jianhua Zhu ◽  
Rongmin Yu

Inflammation is known to be closely associated with the development of cancer. The study was launched in human cervical cancer HeLa cells to investigate the antitumor and anti-inflammatory effects of P2, a marine polypeptide fraction from an important fishery resourceArca subcrenata. The basic research showed that P2 could suppress the production of nitric oxide in LPS-induced RAW264.7 macrophage cells as well as the secretion of inflammatory cytokines IL-6 and TNF-αin human cervical cancer HeLa cells. For the molecular mechanisms, P2 was shown to downregulate the gene expression of proinflammatory cytokines IL-6 and IL-8 and to inhibit the COX-2 and iNOS-related pathways in HeLa cells. In consequence, P2 might inhibit tumor development by blocking the interaction between tumor microenvironment and proinflammatory mediators. All findings indicate that P2 possesses the potential to be developed as a novel agent for cancer therapy.


Author(s):  
Heng Cao ◽  
Peng Guo ◽  
Xiaohui Wu ◽  
Jiankun Li ◽  
Chenlong Ge ◽  
...  

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of digestive tract in the world. Therefore, it is important to carry out studies on the molecular mechanisms of early diagnosis and treatment of HCC to reduce mortality. Methods: Bioinformatic analysis was performed to explore the significant role of GCSF on the occurrence and development of neoplasm. Differently expressed genes (DEGs) were screened, and the significant hub genes related with GCSF were identified by the multiple algorithms of Cytoscape. Functional annotation for DEGs, pathological stage and overall survival analysis were implemented. In addition, the verification for the role of GCSF on HCC was made via the clinical samples. A total of 70 participates diagnosed as HCC were recruited from November 2014 to November 2019. The immunohistochemistry assay, qRT-PCR, receiver operating characteristic (ROC) curves, and overall survival analysis were carried out. Results: GCSF was related with the tumor size, and the expression of GCSF was up-regulated in hepatocellular carcinoma tissues. The enrichment results of GO and KEGG analysis were mainly enriched in “Inflammatory response”, “Protein binding”, “Metabolic pathways”, and “Proteasome”. The tumor diameter (P < 0.001), and survival time (P < 0.001) were significantly associated with expression of GCSF via the verification of clinical data. The univariate and multivariate Cox proportional regression analysis manifested that high expression of GCSF in patients with HCC was related to poor OS. Conclusion: The expression level of GCSF is significantly associated with the prognostic survival of HCC, and it is expected to become a new prognostic marker of HCC, providing a novel idea for future basic research as well as targeted therapy.


2013 ◽  
Vol 18 (9) ◽  
pp. 947-966 ◽  
Author(s):  
Stephen L. Garland

G-protein–coupled receptors (GPCRs) still offer enormous scope for new therapeutic targets. Currently marketed agents are dominated by those with activity at aminergic receptors and yet they account for only ~10% of the family. Progress up until now with other subfamilies, notably orphans, Family A/peptide, Family A/lipid, Family B, Family C, and Family F, has been, at best, patchy. This may be attributable to the heterogeneous nature of GPCRs, their endogenous ligands, and consequently their binding sites. Our appreciation of receptor similarity has arguably been too simplistic, and screening collections have not necessarily been well suited to identifying leads in new areas. Despite the relative shortage of high-quality tool molecules in a number of cases, there is an emerging, and increasingly substantial, body of evidence associating many as yet “undrugged” receptors with a very wide range of diseases. Significant advances in our understanding of receptor pharmacology and technical advances in screening, protein X-ray crystallography, and ligand design methods are paving the way for new successes in the area. Exploitation of allosteric mechanisms; alternative signaling pathways such as G12/13, Gβγ, and β-arrestin; the discovery of “biased” ligands; and the emergence of GPCR-protein complexes as potential drug targets offer scope for new and much improved drugs.


2015 ◽  
Vol 69 (3-4) ◽  
pp. 44-49
Author(s):  
E. N. Iomdina ◽  
E. P. Tarutta

The growing prevalence of progressive myopia and its disabling consequences explains the elaboration of reliable diagnostic markers and new treatment strategies based on the research results of molecular mechanisms underlying the development of the condition. The paper reviews recent basic pathogenetic research studies which have greatly broadened the awareness of the deep causes of progressive myopia associated with the activity of certain growth factors, local and systemic protein metabolism, and regulation of hormonal and neural processes. Practical clinical guidelines for new criteria of diagnosis and control of myopia are published as they could be useful while selecting individual treatment plans including indications to sclera-strengthening therapy and its evaluation. The results may be promising in the elaboration of systemic and local medications for the prevention of myopia progression, which should address the regulation of connective tissue disorders, hormonal shifts, and imbalanced autonomic nervous system. 


Sign in / Sign up

Export Citation Format

Share Document