scholarly journals COMPREHENSIVE STUDY OF SILVER NANOPARTICLES OBTAINED FROM PINUS ROXBURGHII OBTAINED BY GREEN SYNTHESIS CHARACTERIZATION AND ANTIMICROBIAL APPLICATIONS.

Author(s):  
Minakshi Gajanan Pawar ◽  
Ramjan M. Mulani

The increasing resistance of microorganisms against antibiotics threatens the microbiologist. Quantum dots are found to be an excellent antibacterial agent against P. aeruginosa. In the present study pinus roxburghii collected from the Mahabaleshwar region of Maharashtra, India. The plants have been washed and dried in the shade for 10- 15 days. The 5 gm dried plant powder was boiled in 100ml of double distilled water, whose extract is used for, The titration of 1mmol silver nitrate solution. The change in color from pale yellow to red wine and, optical absorption peak in UV studies at 420 nm confirms existence of quantum dots. The morphology of the nanoparticles studied by FE-SEM analysis reveals, the particle size of 100 ± 40 nm. A good antimicrobial activity of obtained quantum dots, againstp. aeruginosa is evidenced with 17 mm in diameter a zone of inhibition. As p aeruginosa causes infection in wounds burns this study has recommended the use of quantum dots in ointments, lotions, and skin creams for early and safe recovery.

2005 ◽  
Vol 19 (4) ◽  
pp. 295-301 ◽  
Author(s):  
Carlos José Soares ◽  
Leonardo Celiberto ◽  
Paula Dechichi ◽  
Rodrigo Borges Fonseca ◽  
Luis Roberto Marcondes Martins

The aim of this study was to evaluate the microleakage of direct and indirect composite inlays by stereomicroscopy and scanning electron microscopy (SEM). Thirty bovine incisors were ground to obtain an incisal platform, simulating the occlusal surface of a human molar. Each tooth received two 8° proximal cavities with cervical finishing line prepared in dentine or enamel. One of the cavities was filled with Filtek Z250/Single Bond, using the direct technique, and the other was filled with with Solidex/Rely X ARC/Single Bond, using the indirect technique. The samples were stored in water at 37°C for 24 hours and placed in a 50% silver nitrate solution for 6 hours in a dark container. Next, the samples were washed under running water, immersed in a developing solution and exposed to fluorescent light for 12 hours. The teeth were then severed and evaluated for dye penetration by stereomicroscopy and SEM. There were no significant differences between the direct and indirect techniques for the cervical finishing line in enamel, but for the finishing line in dentin, the indirect technique allowed less microleakage than the direct technique. SEM analysis showed leakage similar to that observed by stereomicroscopic analysis. The use of stereomicroscopic and SEM evaluations improves microleakage analysis.


2013 ◽  
Vol 1 (04) ◽  
pp. 16-24 ◽  
Author(s):  
Anu Kumar ◽  
Kuldeep Kaur ◽  
Sarika Sharma

The present study reports the synthesis of silver nanoparticle using Morus nigra leaf extract were used as reducing agent for reduction of silver nitrate solution. The synthesis of silver nanoparticles was analyzed by UV-Visible spectroscopy, Scanning Electron Microscopy. The SEM analysis has shown that size of silver nanoparticles synthesized from leaves extract of M.nigra was 200 nm and seems to be spherical in morphology. Morphology of chemically synthesized silver nanoparticles is nearly spherical and of size ranges from 300-500 nm. The average particle size analyzed from SEM analysis was observed to be 350 nm. This article has discussed the synthesis of silver nanoparticles generated from plant extract, characterization and antibacterial analysis. In this study the antibacterial activity was examined against six MTCC cultures collected from IMTECH Chandigarh, Including both gram positive and gram negative bacteria such as P.aeruginosa, S.aureus, B.subtilis, E.coli, P.flourescens and Streptococus mutans. Out of these strains the antimicrobial activity of the silver nanoparticles showed maximum zone of inbhition against P.flourescens (22 mm), P.aeruginosa (19 mm), S.aureus (18 mm) and least effective against E.coli (15mm). In contrast chemically synthesized silver nanoparticles were found most effective against S.aureus (13 mm) and B.subtilis (12mm) and almost ineffective against Streptococcus mutans (6 mm) and P.flourescens (4 mm). In the concluding remarks, the silver nanoparticles synthesized using M.nigra leaves extract would be a better antimicrobial effective against various bacterial species.


2014 ◽  
Vol 3 (10) ◽  
pp. 322-325 ◽  
Author(s):  
Vinoth Kumar Thirumalairaj ◽  
Mahitha Puthanpurayal Vijayan ◽  
Geetharamani Durairaj ◽  
Lakshmanasenthil Shanmugaasokan ◽  
Rincy Yesudas ◽  
...  

The present work investigates the antibacterial activity of silver nanoparticles (Ag-NPs) synthesized by biological method using Sargassum wightii. The fresh live seaweed was collected from the Mandapam coast of Tamilnadu, India. Solvent extract was prepared using acetone, petroleum ether and methanol. Aqueous extract of the seaweed was also used for the synthesis of silver Ag-NPs. Seaweed extract is used as a reducing agent of 2mM silver nitrate solution for the synthesis of Ag-NPs. Periodical monitoring of reaction mixture was done using UV-vis spectroscopy at 300-750 nm. The scanning electron microscopy (SEM) of the sample confirms the presence of Ag-NPs. The antibacterial activity of solvent extract was done by Minimal inhibitory concentration (MIC) assay. The methanol extract of the seaweed at a concentration of 250µg/ml exhibited potent antimicrobial activity against the test microorganism. The zone of inhibition ranging from 8-14 mm was observed with different extracts. The antibacterial activity of the synthesized Ag-NPs against the organism was also done by MIC test. The MIC of Ag-NPs was found to be 130µg/ml for all pathogenic microorganisms selected for the study. The zone of inhibition against Bacillus cereus, Bacillus anhtracis, Staphylococcus aureus and Vibrio alginoyticus were found to be 10, 8, 10 and 9 mm, respectively. The synthesized Ag-NPs exhibited significant antimicrobial activity against the selected microorganisms than the solvent extract of seaweed.DOI: http://dx.doi.org/10.3329/icpj.v3i10.20337 International Current Pharmaceutical Journal, September 2014, 3(10): 322-325


2014 ◽  
Vol 84 (19) ◽  
pp. 2103-2114 ◽  
Author(s):  
Mehmet S Ersoy ◽  
Emel Onder

In this study silver nanoparticles were deposited by electroless coating onto glass-stitched fabrics via the Tollens’ reaction for technical textile applications. The effect of fabric compactness and the amount of silver nitrate solution on conductivity and electromagnetic interference shielding effectiveness (EMI SE) were studied. The results showed that a compact fabric surface promoted the EMI SE and that a critical threshold of surface conductivity of 0.3 S.cm–1 was required to obtain an EMI SE above 50 dB in the frequency range 300 MHz−1.5 GHz. Using SEM analysis we found that conductivity values were compatible with the coating thickness of samples. FT–IR analysis revealed that the presence of Ag particles caused the aliphatic C–H stretching frequencies (2858 and 2927 cm–1) to become shifted to higher values (2901 cm–1, and 2988 and 2972 cm–1, respectively).


2020 ◽  
Vol 9 (1) ◽  
pp. 283-293
Author(s):  
Milad Torabfam ◽  
Meral Yüce

AbstractGreen synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. This study describes the practical synthesis of silver nanoparticles (AgNPs) through the reduction of silver nitrate solution using an algal source, Chlorella vulgaris, as the reducing as well as the stabilizing agent. The energy required for this synthesis was supplied by microwave radiation. The ultraviolet-visible spectroscopy exhibited a single peak related to the surface plasmon absorbance of AgNPs at 431 nm. The AgNPs with high stability (a zeta potential of −17 mV), hydrodynamic size distribution of 1–50 nm, and mostly spherical shape were obtained through a 10 min process. Fourier transform infrared spectroscopy analysis revealed that several functional groups, including carbonyl groups of C. vulgaris, play a significant role in the formation of functional NPs. Antibacterial features of the produced AgNPs were verified against those of Salmonella enterica subsp. enterica serovar typhimurium and Staphylococcus aureus, demonstrating a considerable growth inhibition at increasing concentrations of the NPs. As a result, the formed AgNPs can be used as a promising agent against bacterial diseases.


Author(s):  
Sirorat Wacharanad ◽  
Puncharee Thatree ◽  
Punchaya Yiemwattana ◽  
Penpitcha Paoprajak ◽  
Pimchanok Ngamsangiam ◽  
...  

Abstract Objectives This article aimed to study the effects of the​ roselle-capped​ silver​ nanochip​ ​(SNP-Ro​ chip)​ against Aggregatibacter actinomycetemcomitans, and the toxicity of this film on fibroblast cells to develop this SNP-Ro chip into a local chemical for the treatment of periodontitis in the future. Materials and Methods Using a microwave-assisted synthesis method, silver​ nanoparticles (SNPs) were prepared from a silver nitrate solution and roselle extract as a reducing and capping agent. Then, SNP-Ro chips were fabricated by mixing a solution of SNP-Ro with alginate gel. The antimicrobial effect of the synthesized SNP-Ro chips was performed by the disc diffusion technique and time kill assay. The cytotoxic effect was also determined by the MTS assay. Statistical Analysis One-way analysis of variance (ANOVA) and Scheffe’s method were used to analyze the data for this experiment. Results All three ratios of the SNP-Ro chip produced inhibition zones ranging between 18.75 ± 2.08 and 19.03 ± 2.25 mm. In studying the killing time, the three groups of the SNP-Ro chips completely eradicated A. actinomycetemcomitans within 180 minutes. The percentage of the viable SNP-Ro chip-treated human gingival fibroblasts (HGFs) were significantly increased when compared with the alginate chip-treated cells (p < 0.05). Conclusion This study developed a new method for the deposition of SNPs in alginate gel to make a thin small chip for the sustained release of the SNPs in a periodontal lesion. Therefore, the SNP-Ro chip has the potential to be developed as an adjunctive locally delivered antimicrobial agent in periodontal therapy.


2010 ◽  
Vol 174 ◽  
pp. 405-408 ◽  
Author(s):  
Bao Lin Tang ◽  
Guang Xue Chen ◽  
Qi Feng Chen ◽  
Jing Lei Tai

Printing electronics technology promotes the application of conductive ink. In this paper, the manufacture of nano-sliver conductive ink is investigated. First, Spherical silver nano-particles were reduced from silver nitrate solution by liquid chemical reduction method, with hydrazine hydrate as reductant and PVP as surface-protection reagent. SEM was used to characterize the morphology of silver powders, and the mean particles size is 62.79 nm. Then, conductive ink was prepared with nano-silver particles made in this research as conductive fillers, polyurethane resin and acrylic resin as binders, and stearic acid as dispersant. In the last, the conductive ink was printed on the PCB substrate by screening printing. After the ink is dried, conductivity, abrasion resistance, and adhesion were tested. The experiment results shows that the order of sheet resistivity magnitude is 10-4Ω•m, the number of rubbing fastness is more than 6000, and the adhesion can be resisted repeatedly to tape tear.


2008 ◽  
Vol 37 (8) ◽  
pp. 818-819 ◽  
Author(s):  
Yoshiko Miura ◽  
Kazuko Yui ◽  
Hiroshi Uchida ◽  
Kiyoshi Itatani ◽  
Seiichiro Koda

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hernane S. Barud ◽  
Thaís Regiani ◽  
Rodrigo F. C. Marques ◽  
Wilton R. Lustri ◽  
Younes Messaddeq ◽  
...  

Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by“in situ”preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document