scholarly journals APPLICATIONS OF ACTIVATED CARBON IN WASTE WATER TREATMENT AS A LOW COST MEDIA

Author(s):  
R.P.K Dasanayaka

Environmental pollution caused by the anthropogenic activities is a global challenge. Pollution due to discharge of untreated wastewater, contributes to it considerably. High expenditures for the treatment technologies can be considered as one of the major reason for improper wastewater discharge. Activated carbon provides an excellent solution for this issue as it can be used as a low cost wastewater treatment adsorbent. This paper review, types of activated carbon, their applications and recovery methods in wastewater treatment. Activated carbon from conventional waste such as agricultural waste, woody waste and non conventional waste such as municipal waste can be used as a low cost media for waste water purifications. Physical and chemical processes are used to improve the adsorption property of the activated carbon. H3PO4, KOH and ZnCl2 are the most frequently used chemicals for the activation process. Granular activated carbon, powdered activated carbon, activated carbon fibers and carbon clothes are the major physical forms of the activated carbon. These physical forms are important to maximize the adsorption process according to the purpose of usage. Activated carbon is used to remove heavy metals, dyes, COD, BOD, organic contaminants and volatile organic compounds in the waste water. Various recovery methods are applied to regenerate activated carbons. Among them, chemical, thermal, and bio regeneration methods are examined. Strengths, weaknesses, opportunities, threats related to use of activated carbon and future research priority areas are also discussed

2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nurgul Ozbay ◽  
Adife Seyda Yargic

Activated carbons were prepared by carbonization of tomato paste processing industry waste at 500°C followed by chemical activation with KOH, K2CO3, and HCl in N2 atmosphere at low temperature (500°C). The effects of different activating agents and impregnation ratios (25, 50, and 100 wt.%) on the materials’ characteristics were examined. Precursor, carbonized tomato waste (CTW), and activated carbons were characterized by using ultimate and proximate analysis, thermogravimetric analysis (TG/DTG), Fourier transform-infrared (FT-IR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, point of zero charge measurements (pHPZC), particle size analyzer, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, nitrogen adsorption/desorption isotherms, and X-ray diffraction (XRD) analysis. Activation process improved pore formation and changed activated carbons’ surface characteristics. Activated carbon with the highest surface area (283 m3/g) was prepared by using 50 wt.% KOH as an activator. According to the experimental results, tomato paste waste could be used as an alternative precursor to produce low-cost activated carbon.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 300
Author(s):  
Gobinath Ravindran ◽  
M Radha Madhavi ◽  
Bashir Suleman Abusahmin

With industrial growth, presence of pollutants is growing enormously. Removal of pollutant from waste water and effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like pH, residence time, initial solution concentration, activated carbon dosage and process temperature on the removal of Zn(II) by palm shell based activated carbon from batch adsorption process are studied systematically. The results reveal that palm shell based activated carbon can be an effective adsorbent for removal of Zinc (II) and is efficient compared to other types of adsorbent produced from agricultural waste.  


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


2013 ◽  
Vol 829 ◽  
pp. 386-390 ◽  
Author(s):  
Mehri Imani ◽  
Alimorad Rashidi ◽  
Mojtaba Shariaty-Niassar ◽  
Elahe Sarlak ◽  
Amir Zarghan

Carbon membranes have high adsorption capacitiy with respect to its incredible properties such as unique structural, electronic, optoelectronic, semiconductor, mechanical, chemical and physical. Carbon nanotube (CNT) membranes because of its high permeance have been recently developed.Great attention has been currently paid to the field of fabrication methods capable of producing uniform, well-aligned and monodispersed CNT array. Current research concerns with fabrication of vertically aligned CNT membrane in order to remove heavy metal ion presents in waste water. For this purpose, CNTs are vertically grown up through the holes of anodic aluminium oxide (AAO); as a template, by chemical vapor deposition (CVD) of acetylene gas.In this work a few heavy metals such as Pb (II), Cu (II) and Cd (II) has been examined for checking the perfomance of membrane in aqueous solution. The morphological properties of the aligned CNT membrane were investigated with scanning electron microscopy (SEM). The method has simple technology, low cost, and easy reproduction.


Sign in / Sign up

Export Citation Format

Share Document