scholarly journals Spatial distribution and rate of potential nitrification activity in two hill country pastures

Author(s):  
S.A. Letica ◽  
R. Tillman ◽  
R. Littlejohn ◽  
C.J. Hoogendoorn ◽  
C.A.M. De Klein ◽  
...  

The purpose of this study was to conduct a preliminary investigation into the effect of increasing fertiliser- and excreta-N inputs on the spatial distribution and rate of potential nitrification activity in hill country pasture land at two sites, Invermay and Ballantrae. High nitrification rates could potentially limit N efficiency by increasing N losses through leaching and denitrification. Nitrification potentials (NP) were measured in camp sites and medium slopes of hill country soils receiving 0 kg N and 500 kg N/ha/yr over the previous 18 months. Nitrification potential was determined by calculating the rate of nitrate production (mg NO3-N/kg soil/h) by linear regression of soil solution concentrations, versus time. Nitrification potential was significantly higher at Invermay than at Ballantrae, which was likely due to a significantly lower soil pH at Ballantrae. At Invermay, NP increased with fertiliser-N application rate and in camp site soils. The fertiliser N effect was not observed at Ballantrae. However, soil NO3-N and NP was significantly greater in soils from camp sites than for soils from medium slopes. Best management practices for fertiliser-N application in hill country should make allowances for these factors to maximise farm efficiency and profitability. Keywords: hill country, nitrification potential, nitrogen fertiliser, stock behaviour, excreta-N, mineral-N, New Zealand

2014 ◽  
Vol 94 (2) ◽  
pp. 109-127 ◽  
Author(s):  
Sogol Rasouli ◽  
Joann K. Whalen ◽  
Chandra A. Madramootoo

Rasouli, S., Whalen, J. K. and Madramootoo, C. A. 2014. Review: Reducing residual soil nitrogen losses from agroecosystems for surface water protection in Quebec and Ontario, Canada: Best management practices, policies and perspectives. Can. J. Soil Sci. 94: 109–127. Eutrophication and cyanobacteria blooms, a growing problem in many of Quebec and Ontario's lakes and rivers, are largely attributed to the phosphorus (P) and nitrogen (N) emanating from intensively cropped agricultural fields. In fact, 49% of N loading in surface waters comes from runoff and leaching from fertilized soils and livestock operations. The residual soil nitrogen (RSN), which remains in soil at the end of the growing season, contains soluble and particulate forms of N that are prone to being transported from agricultural fields to waterways. Policies and best management practices (BMPs) to regulate manure storage and restrict fertilizer and manure spreading can help in reducing N losses from agroecosystems. However, reduction of RSN also requires an understanding of the complex interactions between climate, soil type, topography, hydrology and cropping systems. Reducing N losses from agroecosystems can be achieved through careful accounting for all N inputs (e.g., N credits for legumes and manure inputs) in nutrient management plans, including those applied in previous years, as well as the strategic implementation of multiple BMPs and calibrated soil N testing for crops with high N requirements. We conclude that increasing farmer awareness and motivation to implement BMPs will be important in reducing RSN. Programs to promote communication between farmers and researchers, crop advisors and provincial ministries of agriculture and the environment are recommended.


2014 ◽  
Vol 76 ◽  
pp. 211-216
Author(s):  
Iris Vogeler ◽  
Mark Shepherd ◽  
Gina Lucci

Abstract Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. We investigated the effects of N fertiliser management on pasture production and modelled N losses, either via direct leaching of fertiliser N, or indirectly through N uptake and subsequent excretion via dairy cow grazing. The Agricultural Production Systems Simulator (APSIM) was first tested with experimental data from fertiliser response experiments conducted on a well-drained soil in the Waikato region of New Zealand. The model was then used in a 20- year simulation to investigate the effect of fertiliser management on pasture response and the impacts on potential leaching losses. The risk of direct leaching from applied fertiliser was generally low, but at an annual rate of 220 kg N/ha exceeded that from urine patches in one out of 10 years. The main effect of N fertiliser on leaching risk was indirect via the urine patch by providing higher pasture yields and N concentrations. Best management practices could include identification of high risk periods based on environmental conditions (e.g. soil moisture, plant growth), avoidance of fertiliser applications in these periods and the use of duration controlled grazing (DCG) to prevent excreta deposition onto the grazing area during critical times. Keywords: Modelling, APSIM, N fertilisation rates, N fertilisation timing, direct and indirect leaching, urine patches


2003 ◽  
Vol 47 (7-8) ◽  
pp. 275-282 ◽  
Author(s):  
F. Morari ◽  
E. Lugato ◽  
M. Borin

An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Robert Conway Hochmuth ◽  
Marina Burani-Arouca ◽  
Charles Edward Barrett

Carrot (Daucus carota) production has increased in North Florida and South Georgia since 2015. Deep sandy soils, moderate winter climate, availability of irrigation water, and proximity to eastern markets are favorable for carrot production in the region. Nitrogen (N) is required for successful carrot production, and the current recommended N application rate in Florida is 196 kg·ha−1. The objective of this study was to verify the recommended N rate for the sandy soils of North Florida using current industry standard cultivars and practices. Carrot cultivars for the whole carrot fresh market, Choctaw and Maverick, and cultivars for the cut-and-peel market, Triton and Uppercut 25, were direct seeded on 102-cm-wide pressed bed tops on 29 Oct. 2016 and 2 Nov. 2017 in Live Oak, FL. Eight N application rates (56, 112, 168, 224, 280, 336, 392, and 448 kg·ha−1) were tested, and all N applications were placed on the bed top. N rates were split and timed to increase N use efficiency. Regression analyses were used to determine the optimal N rate for carrots in North Florida. A quadratic plateau regression for both seasons combined indicated 206 kg·ha−1 N was the optimal rate for carrots, with marketable yield of 71.3 Mg·ha−1, regardless of cultivar. All four cultivars attained acceptable yield including Uppercut 25, which exhibited significant foliage damage following freezing temperatures. This study resulted in updated information on best management practices for carrot production in Florida, especially nutrient stewardship.


2010 ◽  
Vol 90 (1) ◽  
pp. 101-109 ◽  
Author(s):  
A W McKeown ◽  
S M Westerveld ◽  
C J Bakker

Increasing nutrient and water regulations have necessitated development of best management practices for application of nitrogen (N) and water. This study was conducted to determine if there was an optimal balance of N and water applied for late storage cabbage (Brassica oleracea L. var. capitata). Five rates of N and five irrigation rates arranged in a response surface design replicated three times were supplied to Huron cabbage grown on sandy loam soil to study the interaction of N and water applied. Plots were located at the University of Guelph, Simcoe Research Station, Ontario, Canada from 2003 to 2005. Total and marketable yields were maximized from a low of 278 kg ha-1 N in 2005 to above the highest rate tested (400 kg ha-1 N) in the other 2 yr. In 2005, there were 29 d above 30 °C and marketable yield was 49% lower than 2004, which had only 1 d above 30 °C. A target soil water value of 100% of field capacity was required to maximize yield in all 3 yr. More N is required as the water supply increases. The main influence of irrigation and N application was on head volume. Head density based on fresh weight was not influenced by irrigation or N application, but head density based on dry weight decreased with increased N application. Irrigation and N application should be managed concurrently to maximize yield and quality and N and irrigation efficiency for late storage cabbage. However, N and water will not prevent lost yield due to hot days, which suggests that late-cabbage yields are very sensitive to high air temperatures. Key words: Brassica oleracea var. capitata, cabbage, irrigation, fertigation, quality, nutrient management, air temperature


2019 ◽  
Vol 50 (4) ◽  
pp. 1047-1061 ◽  
Author(s):  
Palki Arora ◽  
Jasmeet Lamba ◽  
Puneet Srivastava ◽  
Latif Kalin

Abstract The linkages among the best management practices implemented at the field level and downstream water quality improvement at the watershed level are complex, because the processes that link management practices and watershed-level water quality span a range of scales. However, it is important to understand the effect of nutrient management strategies on watershed-level water quality because most of the water quality evaluation occurs at the watershed scale. The overall goal of this study was to quantify the effect of broiler litter application method (surface vs. subsurface application) on phosphorus (P) and nitrogen (N) losses in surface runoff using the Soil and Water Assessment Tool (SWAT) model. The research was conducted in the Big Creek watershed (8,024 ha) located in Mobile County, Alabama, USA. At the hydrological response unit level, the subsurface application of broiler litter to pastures reduced average annual (1991–2015) total P and N losses in surface runoff by 72% and 33%, respectively, compared to surface application of broiler litter. At the watershed outlet, subsurface application of broiler litter to pastures (covered 43% of the watershed area after the land use change scenario) reduced average annual (1991–2015) total P and N losses by 39% and 20%, respectively.


2001 ◽  
Vol 1 ◽  
pp. 42-48 ◽  
Author(s):  
Sieglinde Snapp ◽  
Heather Borden ◽  
David Rohrbach

Two case studies are presented here of nitrogen (N) dynamics in potato/maize systems. Contrasting systems were investigated from (1) the highland tropics of Dedza, Malawi in southern Africa and (2) the northern temperate Great Lakes region of Michigan. Formal surveys were conducted to document grower perceptions and N management strategies. Survey data were linked with N budgets conducted by reviewing on-farm data from representative farms in the targeted agroecosystems and simulation modeling to estimate N losses. Potential N-loss junctures were identified. Interventions that farmers might accept are discussed. The Malawi system uses targeted application of very small amounts of fertilizer (average 18 kg N ha-1) to growing plants. This low rate is on the steep part of plant response to N curve and should serve to enhance efficiency; plant growth, however, is generally stunted in Malawi due to degraded soils and weed competition. Very limited crop yields reduce N efficiency from a simulated 60 kg grain per kg N to an actual of ~20 kg grain per kg N (at 40 kg N ha-1applied). Legume-intensified systems could improve growth potential and restore N use efficiency through amelioration of soil quality and transfer functions and from biological fixation N inputs. In the Michigan system, N efficiency is enhanced currently through multiple, split applications of N fertilizer tailored to plant growth rate and demand. Fertilizer N rates used by growers, however, averaged 32% higher than recommended rates and 40% higher than N removed in crop product. Application of 50 kg N ha-1to cover crops in the fall may contribute to the apparent high potential for N leaching losses. Careful consideration of N credits from legumes and residual soil N would improve N efficiency. Overall, N budgets indicated 0 to 20 kg N ha-1loss potential from the Malawi systems and tenfold higher loss potential from current practice in Michigan maize/potato rotations. Best management practices, with or without integration of legumes, could potentially reduce N losses in Michigan to a more acceptable level of about 40 kg N ha-1.


Author(s):  
Na Li ◽  
Yanqing Zhang ◽  
Zhanxiang Sun ◽  
John Yang ◽  
Enke Liu ◽  
...  

Understanding the deposition and tracking the source of soil organic carbon (C) and nitrogen (N) within agricultural watersheds are critical for assessing soil C and N budgets and developing watershed-specific best management practices. Few studies have been conducted and reported on highly eroded hilly-gully watersheds. In this field study, a constructed dam-controlled hilly-gully watershed in northeastern China was selected to identify the sources of soil C and N losses. Soils at various land uses and landscape positions, and sediments near the constructed dam, were collected and analyzed for selected physiochemical properties, total organic carbon (TOC), total nitrogen (TN), and stable isotopes (13C and 15N). Soil C and N loss and deposition in the watershed were assessed and the relative contributions of each source quantified by a stable isotope mixing model (SIAR). Results indicated that soil C loss was primarily from cropland, accounting for 58.75%, followed by gully (25.49%), forest (9.2%), and grassland (6.49%). Soil N loss was similar to soil C, with cropland contribution of 80.58%, gully of 10.30%, grassland of 7.54%, and forest of 1.59%. The C and N deposition gradually decreased along the direction of the runoff pathway near the constructed dam, and the deposited C and N from cropland and gullies showed an order: middle-dam > bottom-dam > upper-dam and upper-dam > bottom-dam > middle-dam, respectively. A high correlation between soil TOC or TN and the sediment properties suggested that the deposition conditions could be the major factors affecting the C and N pools in the sedimentary zones. This study would provide a scientific insight to develop effective management practices for soil erosion and nutrient loss control in highly eroded agriculture watersheds.


EDIS ◽  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Tara Wade ◽  
Gary England ◽  
Christian Christensen

This new 11-page publication focuses on the nitrogen (N) fertilizer best management practices (BMP) for potato crop in Florida. The aim is to provide management strategies that comply with statewide BMP guidelines to maximize yield and economic return while minimizing N losses to the environment. Written by Lincoln Zotarelli, Tara Wade, Gary K. England, and Christian T. Christensen and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1429


Sign in / Sign up

Export Citation Format

Share Document