Soil structure: its importance to resilient pastures in New Zealand (review)

2021 ◽  
Vol 17 ◽  
Author(s):  
David Houlbrooke ◽  
John Drewry ◽  
Wei Hu ◽  
Seth Laurenson ◽  
Sam Carrick

Soil structure is critical to soil quality due to its influence on many soil processes and functions, including water storage and transport, the oxygen supply, the emission of greenhouse gases, and biological processes such as carbon and nitrogen mineralisation, nitrification and denitrification. These soil functions underpin key ecosystem services such as pasture production, nutrient cycling and mitigation of contaminant losses to receiving waters. The paper discusses key soil physical indicators relevant to pasture performance and the environment, including soil porosity, bulk density and hydraulic conductivity. In regions with robust programs for monitoring soil quality, e.g., Waikato, Canterbury, Auckland, Marlborough and Wellington, soil compaction is found to be widespread under pastoral land-use. The specific consequences of degraded soil quality on pasture production and financial implications remain unclear, at farm, regional and national levels. The range of impacts of soil structural damage on pasture yield, persistence, farm system response, and management practices that minimise or repair damage are presented. Knowledge gaps and further research needs are also summarised.

2010 ◽  
Vol 149 (3) ◽  
pp. 337-349 ◽  
Author(s):  
D. J. HOULBROOKE ◽  
R. J. PATON ◽  
R. P. LITTLEJOHN ◽  
J. D. MORTON

SUMMARYLand-use intensification requires more farm inputs to sustain or increase farm product outputs. However, a common concern for land-use intensification is the potential deterioration of soil. The North Otago Rolling Downlands (NORD) region of New Zealand is drought prone, and although traditionally limited to extensive sheep farming, there are large-scale conversions to intensive cattle grazing operations such as dairy farming resulting from an irrigation scheme commissioned in 2006. Pallic soils (Aeric Fragiaqualf in US Soil Taxonomy) such as those in the NORD region are prone to soil compaction because of their ‘high’ structural vulnerability under intensive management. To address these concerns, a field trial was established on a common NORD Pallic soil (Timaru silt loam) to determine how land-use intensification affects indicators of soil quality (macroporosity, bulk density, structural condition score, total and mineralizable carbon and nitrogen and earthworms) and pasture production. The treatments compare irrigated v. dryland pasture and sheep v. cattle grazing on 16 plots. The findings show that soil physical quality responds more quickly to changes in land-use pressure than do biochemical and organic indicators. Both irrigation and cattle grazing, particularly in combination, increased soil compaction; macroporosity on irrigated plots grazed by cattle ranged from 9·1 to 13·3% v/v at a depth of 0–50 mm, compared to dryland plots with sheep grazing (18·9–23·0% v/v). Soil compaction/damage has implications for pasture production, soil hydrology and nutrient movement. Land management practices for intensive cattle grazing of irrigated soil prone to treading damage therefore need to implement high compaction risk strategies to avoid or ameliorate potential changes to soil quality.


2021 ◽  
Vol 17 ◽  
Author(s):  
Gerald Rys ◽  
Joel Gibbs ◽  
Dave Clark ◽  
Greg Lambert ◽  
Harry Clark ◽  
...  

This paper discusses key changes in New Zealand pastoral agriculture over the last three decades at the national scale, and how these have influenced the performance of grasslands, animal productivity, and the resilience of pastoral livestock systems. It assesses the positive and negative impacts of land-use change, changes in pasture production and supplementary feeding and dry matter (DM) consumed, and the key management practices implemented by farmers to enhance farm system resilience. It also notes environmental and other policy changes and examines how sectors and Government have started to respond. The largest estimated increase in DM consumed by livestock from 1990 to 2018 was from increased supplementary feed in the dairy sector. The largest estimated decline in DM production was due to pasture-land conversion to planted forests, followed by weed and pest impacts. In 2018, the dairy sector consumed the most DM at an estimated 25.0M t/yr, followed by sheep at 16.6M t/yr and beef at 10.1M t/yr. The total consumed DM in 2018 was 51.9 M t/yr which corresponds well with the independently estimated national pasture DM production of 64M t/yr. The environmental impacts of managements to enhance resilience in DM availability are becoming evident and future regulations may limit the extent some of these practices can expand.


2021 ◽  
Vol 13 (15) ◽  
pp. 8619
Author(s):  
Orestis Kairis ◽  
Chrysoula Aratzioglou ◽  
Athanasios Filis ◽  
Michel van Mol ◽  
Costas Kosmas

The effects of four main practices tillage versus no-tillage, and intensive grazing versus extensive grazing, applied in characteristic agricultural and grazing lands of Crete Island were evaluated in situ using nine soil quality indicators. The following nine representative indicators of soil quality assessment were assessed using the rapid visual assessment methodology adopted at European level in the context of the EU research project iSQAPER: susceptibility to water and wind erosion, surface ponding (under cropping), formation of tillage pan, soil color, soil porosity, soil structure, susceptibility to slaking, infiltration rate, and biodiversity status. These indicators were measured in 48 agricultural field-plots to adequately represent the four above-mentioned practices and the different types of geomorphological patterns existing in the area. Additionally, 38 agricultural fields were sampled in the topsoil to assess cultivation practices (tillage, no-tillage) on soil organic carbon, cation exchange capacity, exchangeable potassium, available phosphorous, and soil aggregate stability. Based on the indicators rating methodology, the appropriate statistical tests were applied and the soils under different managements were characterized in terms of their potential quality and their general agricultural value. The obtained data showed that in agricultural areas, significant differences were detected between tillage and no-tillage management practices for the indicators of soil structure and consistency and infiltration rate. In grazing land, significant differences were found for the soil quality indicators of susceptibility to erosion and infiltration rate for the corresponding practices of intensive and extensive grazing. Organic carbon content, exchangeable potassium content and aggregate stability were greatly affected in tillage versus no-tillage management practices.


Author(s):  
Allan de Marcos Lapaz ◽  
Carolina dos Santos Batista Bonini ◽  
Gabriela Lozano Olivério ◽  
Tatiane Paes dos Santos ◽  
José Guilherme Chitero ◽  
...  

Proper soil management interferes in the result of the installed crop. The knowledge of the positive and/or negative influence on the production systems is essential to improve the physical, chemical and biological quality of the soil and, for that, there are some attributes that act as indicators of soil quality. Practices carried out improperly will result in problems in soil structure, such as compaction, lack of availability of water and air in the soil and for plants, soil loss among others. Some properties as soil porosity, aggregation, compaction, water infiltration are used to measure soil quality. Given this, the use of these attributes as indicators is of utmost importance for excellent productivity, since management practices can directly influence the development of plants.


Author(s):  
S.M. Thomas ◽  
M.H.Beare C.D. Ford ◽  
V. Rietveld

Humping/hollowing and flipping are land development practices widely used on the West Coast to overcome waterlogging constraints to pasture production. However, there is very limited information about how the resulting "new" soils function and how their properties change over time following these extreme modifications. We hypothesised that soil quality will improve in response to organic matter inputs from plants and excreta, which will in turn increase nutrient availability. We tested this hypothesis by quantifying the soil organic matter and nutrient content of soils at different stages of development after modification. We observed improvements in soil quality with increasing time following soil modification under both land development practices. Total soil C and N values were very low following flipping, but over 8 years these values had increased nearly five-fold. Other indicators of organic matter quality such as hot water extractable C (HWC) and anaerobically mineralisable N (AMN) showed similar increases. With large capital applications of superphosphate fertiliser to flipped soils in the first year and regular applications of maintenance fertiliser, Olsen P levels also increased from values


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


Sign in / Sign up

Export Citation Format

Share Document