scholarly journals Ecodiagnostic Indicators of Gray-Brown Soil (Kastanozems) and Participation of Micro-organisms in the Formation of Fertility

2020 ◽  
Vol 6 (5) ◽  
pp. 217-223
Author(s):  
Z. Mustafayev

The article presents the general physical and geographical location of the terrain, geomorphological and geological structure, climatic condition, soil and vegetation cover of the Lesser Caucasus, the results of soil microorganisms of gray–brown (Kastanozems) soils under grain are considered and analyzed. The studies were conducted in 2018–2019. in the field and in the laboratory by conventional methods. It was found that the number of aerobic diazotroph in the rhizosphere from May to July varies considerably. Changes depend on crop development and the greatest number and activity was observed in June. Activation of bacteria in agrophytocenosis winter grain falls on dairy phase and waxy hundred related to high soil moisture and temperature.

Author(s):  
Lungelihle Jafta ◽  
Nnamdi Nwulu ◽  
Eustace Dogo

Energy for heating and cooling is among the biggest costs in greenhouse crop production. This has led to a rethink on energy-saving strategies, including the demand for solar energy as a viable renewable and sustainable choice for greenhouse farming. This chapter presents the development of a solar-powered system leveraging on internet of things and GSM technologies for sensing, controlling, and maintaining optimal climatic parameters inside a greenhouse. The proposed system is designed to automatically measure and monitor changes in temperature, humidity, soil moisture, and the light intensity. The strategy utilized in the design framework provides the user with the information of the measured parameters online and via SMS regardless of their geographical location. The chapter also incorporates a mechanism to self-regulate the climatic condition inside the greenhouse, suitable for the plant growth. Such a system can help improve the quantity and quality of crops grown in a greenhouse. Tests carried out on the system prove its effectiveness according to the design considerations.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 599E-600
Author(s):  
Regina P. Bracy ◽  
Richard L. Parish

Improved stand establishment of direct-seeded crops has usually involved seed treatment and/or seed covers. Planters have been evaluated for seed/plant spacing uniformity, singulation, furrow openers, and presswheel design; however, effects of presswheels and seed coverers on plant establishment have not been widely investigated. Five experiments were conducted in a fine sandy loam soil to determine effect of presswheels and seed coverers on emergence of direct-seeded cabbage and mustard. Seed were planted with Stanhay 870 seeder equipped with one of four presswheels and seed coverers. Presswheels included smooth, mesh, concave split, and flat split types. Seed coverers included standard drag, light drag, paired knives, and no coverer. Soil moisture at planting ranged from 8% to 19% in the top 5 cm of bed. Differences in plant counts taken 2 weeks after planting were minimal with any presswheel or seed coverer. Visual observation indicated the seed furrow was more completely closed with the knife coverer in high soil moisture conditions. All tests received at least 14 mm of precipitation within 6 days from planting, which may account for lack of differences in plant emergence.


2020 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Rachele Venanzi ◽  
Loredana Barbona ◽  
Francesco Latterini ◽  
Rodolfo Picchio

The aim of this work was to assess the possible impacts on the forest soil and stand due to silvicultural treatment and forest operations in a beech high forest. Even aged beech forests (Fagus sylvatica L.) in the Municipality of Cappadocia (L’Aquila) and in the Municipality of Vallepietra (Roma) were analyzed. The analysis of the soil and stand were performed in order to assess the effects attributable to applied silviculture and forest logging. Two different logging methodologies (in particular for the extraction) were applied: mules were used in the areas with greater slopes and with obstacles, while for the areas with better accessibility, mechanical means were used, in this case tractors. In detail, the main objective was to assess the disturbance on the ground and on the stand, generated by the two different levels of mechanization. In addition, it was also interesting to understand the possible effect on the soil and specifically on the partial uncovering where part of the tree canopy was removed. Only through an accurate cross-analysis of the studied parameters and indices could the anthropogenic impacts on the soil and stand due to forest operations be highlighted according to the different logging methodologies applied. The main results showed that the disturbances caused to the soil and stand were essentially caused in the bunching and extraction operations. The importance of avoiding or limiting the continuous passage of vehicles and animals on forest soil clearly emerges, especially in conditions of high soil moisture. It is also important to use correct technologies that are adequate for the specific environmental characteristics and the work plan. Finally, it can be said that there was no difference in the disturbance caused by the two logging methods when compared. Substantial differences in terms of improvement can be defined when comparing the findings of this study with other research studies. This can be done by applying a different type of mechanization with a different logging system.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.


Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 975-978 ◽  
Author(s):  
Cynthia A. Blank ◽  
Timothy D. Murray

Germination of Cephalosporium gramineum conidia in soil was up to twofold greater at -0.064 MPa than at -0.037 and -0.007 MPa when incubated at 5°C for 2 days. Soil pH from 4.7 to 7.5 did not have a significant influence on germination of conidia and the interaction between soil pH and matric potential on germination was not significant. Soil fungistasis, which was previously observed for conidia of C. gramineum, was not observed in these studies. Germination of conidia on mineral salts agar containing phosphate buffer was significantly less at pH 4.5 than at 5.5, 6.5, or 7.5 at 5°C in one of two experiments; however, pH had no influence on germination at 10 or 20°C in two experiments. Although Cephalosporium stripe is more severe under conditions of high soil moisture and low soil pH, increased germination of conidia in response to these factors does not explain the observed increase in disease.


1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


2015 ◽  
Vol 50 (7) ◽  
pp. 562-570 ◽  
Author(s):  
Marcela Tonini Venturini ◽  
Vanderlei da Silva Santos ◽  
Eder Jorge de Oliveira

Abstract: The objective of this work was to define procedures to assess the tolerance of cassava genotypes to postharvest physiological deterioration (PPD) and to microbial deterioration (MD). Roots of six cassava genotypes were evaluated in two experiments, during storage under different environmental conditions: high temperature and low soil moisture; or low temperature and high soil moisture. Roots were treated or not with fungicide (carbendazim) before storage. Genotype reactions to MD and PPD were evaluated at 0, 2, 5, 10, 15, 20, and 30 days after harvest (DAH), in the proximal, medial, and distal parts of the roots. A diagrammatic scale was proposed to evaluate nonperipheral symptoms of PPD. Fungicide treatment and root position did not influence PPD expression; however, all factors had significant effect on MD severity. Genotypes differed as to their tolerance to PPD and MD. Both deterioration types were more pronounced during periods of higher humidity and lower temperatures. The fungicide treatment increased root shelf life by reducing MD severity up to 10 DAH. Whole roots showed low MD severity and high PPD expression up to 10 DAH, which enabled the assessment of PPD without significant interference of MD symptoms during this period.


1995 ◽  
Vol 75 (1) ◽  
pp. 99-103 ◽  
Author(s):  
C. S. Tan ◽  
B. R. Buttery

Using heat-balance stem flow gauges, we were able to measure directly and continuously the sap flow rates in two pairs of soybean [Glycine max (L.) Merr.] isolines differing in stomatal frequency. Plants with high stomatal frequency transpired significantly more water than the low stomatal frequency plants at high soil moisture levels. Under low soil moisture levels, the water use rate decreased greatly for the high stomatal frequency plants. Plants with low stomatal frequency were able to maintain greater sap flow rates than those with high stomatal frequency. Higher leaf temperatures associated with the low stomatal frequency plants were likely due to lower transpiration rates which reduced evaporative cooling especially under well-watered conditions. Key words:Glycine max (L.) Merr., transpiration, water deficits


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


Sign in / Sign up

Export Citation Format

Share Document