Urban Health: A New Level of Smart City Development

Currently, the innovation agenda of the industry professional and academic community in the information and conceptual plans is largely filled with topics related to Building Information Modeling (BIM) technologies. In this sense, often, in a different context, we are talking about several new "digital" subject areas for the qualitative development of creation technologies, united by the new convergent paradigm "Smart City". For the first time, the general logic of convergent modeling of the "Smart City" is presented, the key target priority of which is the new socio-technological paradigm "Urban Health" at the level of relationships between the entity models "Smart City" and the results of their convergence. At the same time, it is shown that practical problems at the functional level of designing building systems today are solved, as a rule, using a wide range of modern automation technologies, and solving problems at the cognitive level of the complex effects of creative activity requires the use of technologies and techniques with elements of artificial intelligence.

SAGE Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215824402110332
Author(s):  
Ihuoma Onungwa ◽  
Nnezi Olugu-Uduma ◽  
Dennis R. Shelden

Building Information Modeling (BIM) was created to address the Architecture, Engineering, and Construction (AEC) industry’s lack of collaboration among consultants. Advances in cloud BIM have led to the easy exchange of data and real-time collaboration among consultants from conceptual design to the detailed construction drawing stage and through the project life cycle. This is critical in the development of smart cities. Cloud BIM also facilitates visualization of the city and data exchange for internet of things (IoT). Smart city development involves incorporating data from sensors and hardware attached to existing infrastructure. This article studies cloud BIM technology as a means of project integration in smart city development. To do this, a case study of digital modeling for the development of a smart city was done. Benefits include seamless communication, monitoring real-time progress, and visualization of files. Problems encountered include governance problems, problems preserving work sets, the integrity of drawings, and difficulty specifying coordinates on-site.


2021 ◽  
Vol 13 (10) ◽  
pp. 1889
Author(s):  
Junxiang Zhu ◽  
Peng Wu

The development of a smart city and digital twin requires the integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS), where BIM models are to be integrated into GIS for visualization and/or analysis. However, the intrinsic differences between BIM and GIS have led to enormous problems in BIM-to-GIS data conversion, and the use of City Geography Markup Language (CityGML) has further escalated this issue. This study aims to facilitate the use of BIM models in GIS by proposing using the shapefile format, and a creative approach for converting Industry Foundation Classes (IFC) to shapefile was developed by integrating a computer graphics technique. Thirteen building models were used to validate the proposed method. The result shows that: (1) the IFC-to-shapefile conversion is easier and more flexible to realize than the IFC-to-CityGML conversion, and (2) the computer graphics technique can improve the efficiency and reliability of BIM-to-GIS data conversion. This study can facilitate the use of BIM information in GIS and benefit studies working on digital twins and smart cities where building models are to be processed and integrated in GIS, or any other studies that need to manipulate IFC geometry in depth.


2021 ◽  
pp. 2141007
Author(s):  
Mengyi Lian ◽  
Xiaowei Liu

Building information modeling (BIM) is one of the most exciting recent construction, engineering, and architecture developments. Built environments play a significant role in Smart City worldwide, and they are used to convey useful information to achieve smart city strategic goals. In modern project management, optimizing resources, BIM data integration, and data sharing in a smart city environment is challenging. Hence, in this paper, IoT-based Improved Building Information modeling (IoT-IBIM) has been proposed to overcome the challenges in building information modeling in modern project management for sustainable smart city applications. This paper discusses the efforts to create and integrate built-in environment data with IoT sensors for effective communication. The Internet of Things provides efficient resource control, increased efficiency, and improved human quality of life. As a result, the Internet of Things is a critical enabler of smart societies, including smart homes, smart cities, and smart factories. Building Information Modeling is an advanced asset allocation framework that generates high-quality output, reduces resource use, reduces environmental effects of development, and secures resources and availability for future generations. The experimental results show that the proposed IoT-IBIM method enhances the performance ratio and improves data integration and data sharing in a smart city environment.


Author(s):  
Sara Giaveno

The chapter proposed aims at facing the various implications underlying the smart city concept based on digital twins. The structure of the text is articulated in three main themes: the use of the term “smart city” and the role that technologies had in its definition; the “3D city model” meaning and the integration procedures between BIM (building information modeling) and GIS (geographic information system); the classification of 3D city models by use cases. The chapter can provide researchers with a detailed dissertation aimed at clarifying both the theoretical and technical features belonging to smart city and its related innovative technologies.


2020 ◽  
Vol 47 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Fernanda S. Bataglin ◽  
Daniela D. Viana ◽  
Carlos T. Formoso ◽  
Iamara R. Bulhões

The adoption of prefabricated building systems has grown due to the need to reduce duration and cost of construction projects, as well as to improve quality and working conditions. However, the adoption of those systems requires an intense exchange of information to integrate the production of components, logistics operations, and site assembly. This is particularly important in engineer-to-order environments, in which the level of uncertainty tends to be high. This research proposes a model for planning and controlling the delivery and assembly of ETO prefabricated building systems, emphasizing the integration between site installation and logistics operations. This model was devised in an empirical study carried out in a company that delivers and assembles prefabricated concrete structures. The main theoretical contribution is a set of approaches to implement the “pull production” and “reduce variability” principles in this particular context, exploring synergies that exist between Lean Production principles and Building Information Modeling (BIM) functionalities.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Aidin Nobahar Sadeghifam ◽  
Abdul Kadir Marsono ◽  
Iman Kiani ◽  
Umit Isikdag ◽  
Ali Asghar Bavafa ◽  
...  

During the previous two decades, the energy saving potential using systematic building management is considered to be important which should be considered through the building lifecycle. Among the wide range types of different buildings, Public buildings are considered as one of the biggest energy-consuming sector in the world and major part of this amount is used by the air conditioning system especially in tropical climates. The most effective decisions related to sustainable design of a building facility are made in the feasibility and early design stages. Building Information Modeling (BIM) can expedite this process and provide the opportunity of testing and assessing different design alternatives and materials selection that may impact on energy performance of buildings. This paper aims at evaluating the efficiency of various types of wall materials with regard to theirs properties on energy saving. The case study in this paper is modeled by means of BIM application and then simulated by software, which is appropriate for energy analysis. The current energy consumption patterns of this case identified and shifted to the optimized level of energy usages by changing the walls materials to find most optimized of walls materials. Modification most optimized wall materials and energy analysis indicated 9347 Wh in Per meter square of electrical energy saving.


2018 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Jaime Santamarta Martínez ◽  
Javier Mas Domínguez

ResumenLa metodología BIM (Building Information Modelling), ampliamente implantada en el sector de la edificación y de la arquitectura, ha transformado la manera de desarrollar tanto los proyectos como las obras de construcción. Si bien la esencia de esta metodología se basa en la generación de un modelo tridimensional, la visualización de éste a través de dispositivos bidimensionales hace que la experiencia e interacción con el modelo no sea plena. Es por ello que la aparición en el mercado de nuevas tecnologías como la realidad virtual y la realidad aumentada, abren un amplio abanico de posibilidades ligadas al sector de la construcción. En este sentido, en Acciona Ingeniería se ha desarrollado un proyecto piloto en colaboración con Trimble y Microsoft donde a partir de un modelo BIM se ha creado una realidad aumentada basada en hologramas, que permitan recrear una simulación aplicada a la construcciónAbstractThe BIM (Building Information Modeling) methodology, widely implemented in the building and architecture sector, has transformed the way to develop both projects and construction works. Although the essence of this methodology is based on the generation of a three-dimensional model, the visualization of it through two-dimensional devices means that the experience and interaction with the model is not complete. That is why the appearance in the market of new technologies such as virtual reality and augmented reality, open a wide range of possibilities linked to the construction sector. In this sense, Acciona Engineering has developed a pilot project in collaboration with Trimble and Microsoft where, based on a BIM model, an augmented reality based on holograms has been created, allowing to recreate a simulation applied to construction


Author(s):  
Jasim Farooq ◽  
Paawan Sharma ◽  
Sreerama Kumar R

Building Information Modeling (BIM) has established into a powerful solution for our construction requirements throughout its life cycle. Compared to conventional methods, BIM offers simple, faster and accurate methodology for modelling, estimation and analysis. In this paper, a novel Autodesk Revit add-in tool named as “Electrical System Estimation and Costing Tool”(ESECT) is proposed for the simultaneous estimation of electrical connected load, demand load, Volt Ampere per square meter, cost of electrical system construction and monthly bill from a residential building model and the add-in tool is developed by using Visual basic C# language.  Research results indicate that wide range of BIM automated tools are possible for code-checking and estimation for design analysis at all stages of electrical system development and eventually leads to better design and cost reduction.


2020 ◽  
Vol 12 (14) ◽  
pp. 5644
Author(s):  
Sebastian Theißen ◽  
Jannick Höper ◽  
Jan Drzymalla ◽  
Reinhard Wimmer ◽  
Stanimira Markova ◽  
...  

Holistic views of all environmental impacts for buildings such as Life Cycle Assessments (LCAs) are rarely performed. Building services are mostly included in this assessment only in a simplified way, which means that their embodied impacts are usually underestimated. Open Building Information Modeling (BIM) and Industry Foundation Classes (IFC) provide for significantly more efficient and comprehensive LCA performance. This study investigated how building services can be included in an open BIM-integrated whole-building LCA for the first time, identified challenges and showed six solution approaches. Based on the definition of 222 exchange requirements and their mapping with IFC, an example BIM model was modeled before the linking of 7312 BIM objects of building services with LCA data that were analyzed in an LCA tool. The results show that 94.5% of the BIM objects could only be linked by applying one of the six solution approaches. The main problems were due to: (1) modeling by a lack of standardization of attributes of BIM objects; (2) difficult machine readability of the building services LCA datasets as well as a general lack of these; and (3) non-standardized properties of building services and LCA specific dataset information in the IFC data format.


2013 ◽  
Vol 838-841 ◽  
pp. 3176-3179
Author(s):  
Young Sang Cho ◽  
Sung Chul Hong ◽  
Je Hyuk Lee ◽  
Hyun Suk Jang

AEC (Architecture, Engineering, and Construction) industries are in the process of paradigm shift on the performance of practice, particularly in the fields of architects, consulting engineers such as structural engineers for structural BIM, civil engineers, MEP engineers, and contractors led by Building Information Modeling (BIM). Overall adoption of BIM in the AEC industries of North America has increased from 17% in 2007 to 71% in 2012 which is over 400% growth over last 5 years. This study analyzes and examines the BIM adoption status of AEC industry in the world including the North America and in the R.O. Korea through the literature survey. This study also examines how academic community is preparing for the drastic cultural change of work process in the construction industry due to BIM adoption in the foreign and domestic AEC industry. This paper presents the case study of BIM education including Capstone Design in the R.O. Korea. This study is to propose that academia needs to establish the appropriate educational curriculum and implementation to enhance, improve and research the state of art BIM technology together with AEC industry.


Sign in / Sign up

Export Citation Format

Share Document