Revisioning sculpture: A cultural heritage case study from Toureen Peacaun, County Tipperary, Ireland

2010 ◽  
Vol 4 (1-2) ◽  
pp. 95-109
Author(s):  
Orla Murphy

Laser scanning of stone sculpture creates accurate digital models that may be accessed and interpreted by a wide range of end users at many levels of education and experience. This article explores that activity by focusing on the process of recording a damaged early medieval inscribed high cross shaft at Toureen Peacaun, Co. Tipperary, Ireland. Revisualising the monument is only one aspect of the scholarly process. Renewed interpretations of cultural heritage objects in digital media provide many answers but also stimulate further challenges for humanities computing, notably, how to address the non-machine readable elements of cultural heritage data.

Author(s):  
K. Lee ◽  
X.W. Xu

The three main methods of digitization can be broadly defined as contact digitization, image-based digitization (photogrammetry), and geometry-based digitization (laser scanning). With the development of the latter two digitization methods, and advanced rendering technologies, virtual displays and museums can now be used widely. (Hung, 2007) Furthermore, recent developments in interactive 3-D computer graphics technology have seen an increased interest in, and use of, 3-D digitization for cultural heritage objects. (Muller-Wittig, Zhu, & Voss, 2007) Technologies for reconstructing or remodeling physical components in 3- D formats are not new in the engineering field, in particular within manufacturing engineering. However, 3-D digitization used for the preservation and archiving of cultural artifacts is relatively recent.


2021 ◽  
Author(s):  
Abdullah Taha Ahmed Albourae

There are various surveying techniques used in the field of cultural heritage documentation. Close Range Photogrammetry (CRP) and Terrestrial Laser Scanning (TLS) techniques have been widely used in 3D modeling applications. Various research studies integrate these techniques to enhance the quality of the data acquired. The main objective of this research is to assess the accuracy of TLS and CRP. The two methods are applied to two culture heritage case studies, which are located in the historic district in Jeddah, Saudi Arabia. The data obtained from both techniques is compared with data captured using traditional surveying techniques as reference data. The results show that TLS tends to be more accurate than CRP. In the first case study (Bab Makkah), CRP and TLS produced 0.044 m and 0.008 m overall RMS error, respectively; while CRP produced 0.025 m and TLS produced 0.021 m in the second case study (Bab Sharif).


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


Heritage ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 1471-1498 ◽  
Author(s):  
Ikrom Nishanbaev ◽  
Erik Champion ◽  
David A. McMeekin

The amount of digital cultural heritage data produced by cultural heritage institutions is growing rapidly. Digital cultural heritage repositories have therefore become an efficient and effective way to disseminate and exploit digital cultural heritage data. However, many digital cultural heritage repositories worldwide share technical challenges such as data integration and interoperability among national and regional digital cultural heritage repositories. The result is dispersed and poorly-linked cultured heritage data, backed by non-standardized search interfaces, which thwart users’ attempts to contextualize information from distributed repositories. A recently introduced geospatial semantic web is being adopted by a great many new and existing digital cultural heritage repositories to overcome these challenges. However, no one has yet conducted a conceptual survey of the geospatial semantic web concepts for a cultural heritage audience. A conceptual survey of these concepts pertinent to the cultural heritage field is, therefore, needed. Such a survey equips cultural heritage professionals and practitioners with an overview of all the necessary tools, and free and open source semantic web and geospatial semantic web platforms that can be used to implement geospatial semantic web-based cultural heritage repositories. Hence, this article surveys the state-of-the-art geospatial semantic web concepts, which are pertinent to the cultural heritage field. It then proposes a framework to turn geospatial cultural heritage data into machine-readable and processable resource description framework (RDF) data to use in the geospatial semantic web, with a case study to demonstrate its applicability. Furthermore, it outlines key free and open source semantic web and geospatial semantic platforms for cultural heritage institutions. In addition, it examines leading cultural heritage projects employing the geospatial semantic web. Finally, the article discusses attributes of the geospatial semantic web that require more attention, that can result in generating new ideas and research questions for both the geospatial semantic web and cultural heritage fields.


Author(s):  
I. Trizio ◽  
S. Brusaporci ◽  
A. Luigini ◽  
A. Ruggieri ◽  
A. Basso ◽  
...  

<p><strong>Abstract.</strong> In order to be properly handed down, especially in particular conditions with a high rate of vulnerability, cultural heritage requires documentation and enhancement strategies. The case study presented in this paper is particularly critical not only for the conservation conditions, but especially for the environmental conditions: the Catacombs of San Vittorino have complex conditions of recovery, because of the nature of the artefact and because of the poor lighting of the main environments. For this particularity, a workflow was developed that, in order to achieve the creation of an immersive device navigable by digital viewers such as Oculus Rift or similar, required the start-up of shooting by laser scanning, and then treat the point cloud with different software, in order to obtain a satisfactory result that, in other contexts, could have started easily from a photogrammetric shooting.</p>


Author(s):  
D. Dominici ◽  
M. Alicandro ◽  
E. Rosciano ◽  
V. Massimi

Nowadays geomatic techniques can guarantee not only a precise and accurate survey for the documentation of our historical heritage but also a solution to monitor its behaviour over time after, for example, a catastrophic event (earthquakes, landslides, ecc). Europe is trying to move towards harmonized actions to store information on cultural heritage (MIBAC with the ICCS forms, English heritage with the MIDAS scheme, etc) but it would be important to provide standardized methods in order to perform measuring operations to collect certified metric data. The final result could be a database to support the entire management of the cultural heritage and also a checklist of “what to do” and “when to do it”. The wide range of geomatic techniques provides many solutions to acquire, to organize and to manage data at a multiscale level: high resolution satellite images can provide information in a short time during the “early emergency” while UAV photogrammetry and laser scanning can provide digital high resolution 3D models of buildings, ortophotos of roofs and facades and so on. This paper presents some multiscale survey case studies using UAV photogrammetry: from a minor historical village (Aielli) to the centre of L’Aquila (Santa Maria di Collemaggio Church) from the post-emergency to now. This choice has been taken not only to present how geomatics is an effective science for modelling but also to present a complete and reliable way to perform conservation and/or restoration through precise monitoring techniques, as shown in the third case study.


Author(s):  
S. Chiarini ◽  
S. Cremonesi ◽  
L. Fregonese ◽  
F. Fassi ◽  
L. Taffurelli

In this paper, a Cultural Heritage survey, performed by employing and integrating different type of acquisition technologies (imagebased and active sensor based) is presented. The aim of the survey is to create a 3D multiscale database, therefore, different restitution scales, from the architectural-urban one to a detail one are taken in consideration. This research is part of a project financed by the Unesco for the study of historical gardens located in Mantua and Sabbioneta, and in particular for the <i>Palazzo Te</i> renaissance gardens in Mantua, which are reported in this paper. First of all, a general survey of the area has been realized by employing the classical aerial photogrammetry in order to provide the actual arboreal and urban furniture conditions of the gardens (1:500 scale). Next, a detailed photogrammetric survey of the Esedra courtyard in <i>Palazzo Te</i> has been performed by using a UAV system. At the end, laser scanning and traditional topography have been used for the terrestrial detailed acquisition of gardens and architectural façades (1:50&ndash;1:20 scale). The aim of this research is to create a suitable graphical documentation support for the study of the structure of the gardens, to analyze how they have been modified over the years and as an effective support for eventual future re-design. Moreover, the research has involved a certain number of botanic and archeological investigations, which have been duly acquired and modeled with image based systems.<br><br> Starting from the acquired datasets with their acquisition scales, a series of comparative analysis have been performed, especially for those areas in which all the systems have been employed. The comparisons have been extracted by analyzing point cloud models obtained by using a topographical network.<br><br> As a result, the multi-range approach efficiency, obtained by employing the actual available technologies have been illustrated in the present work.


Sign in / Sign up

Export Citation Format

Share Document