scholarly journals Evaluation of Major and Environmentally Driven Genes for Resistance in Pakistani Wheat Landraces and their Prospected Potential against Yellow Rust

2020 ◽  
Vol 9 (3) ◽  
pp. 145-156
Author(s):  
Muhammad Tariq-Khan ◽  
Muhammad T. Younas ◽  
Javed I. Mirza ◽  
Shahid I. Awan ◽  
Muhammad Jameel ◽  
...  

Yellow rust is caused by Pst (Puccinia striiformis tritici), the most devastating wheat disease with continuous challenge of emerging virulences breaking vertical resistance worldwide resulting in epidemics. Vertical resistance genes incorporation is sustainable, economical and environment-friendly approach to control rust diseases. Wheat landraces (WLR) acquired vertical resistance through long time exposure of host pathogen survival competition in specific area having unique agronomic traits, genetic base and resistance against biotic and abiotic agents can be exploitable commodity for future food production. Fifty Pakistani WLRs already with known vertical resistance were screened against 7 potential Pakistani Pst races at seedling stage under glasshouse conditions to postulate resistance genes. Resistance magnitude was compared among the landraces. Six genes Yr1, Yr8, Yr9, Yr43, Yr44, and YrTr1 were successfully postulated either singly or in combination along with unidentified genes in 45 landraces. Pakistani Pst races are avirulent to Yr5, Yr10, Yr15, Yr24, Yr32, YrSp and YrTye. Most frequently postulated genes are Yr44 found in 22 genotypes, YrTr1 in 21, Yr9 in 19, Yr43 in 18, Yr8 and Yr1 in 14 wheat landraces. Multiple Yr gene pyramiding was observed in (B-74, B-281, B-530) with the presence of Yr8, Yr9, Yr43, Yr44, and YrTr1 and single gene were postulated from 12 genotypes. WLRs (B-03, B-158, B-160, B-171) reaction was immune showing presence of novel Yr genes. Study provides information regarding yellow rust resistance genes originated independently against localized Pst races with desirable agronomic traits since long and can be option for food security in changing environmental challenges.

Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 499-504 ◽  
Author(s):  
A. H. Yahyaoui ◽  
M. S. Hakim ◽  
M. El Naimi ◽  
N. Rbeiz

Virulence-avirulence phenotypes of Puccinia striiformis isolates collected in Lebanon and Syria were determined on seedlings of the wheat-yellow rust differential genotypes. We found 25 and 11 physiologic races over 6 years (1994 to 1999) in Syria and Lebanon, respectively. The composition of physiologic races found in Syria and Lebanon differed greatly between 1994 and 1999. Races identified in 1999, such as 230E150 and 230E134, have wider spectra of virulence on resistant genotypes than races collected in 1994. In Lebanon, three races were found in 1994 compared with six races in 1999. Yellow rust differential genotypes were used in a trap nursery to monitor yellow rust populations under natural conditions. Races identified from cultivars in the trap nursery in Syria and Lebanon, and from land race cultivars in Iraq, were recovered among the races identified from farm fields. Yellow rust samples were collected from Yemen, and none of the races identified from Yemen samples were identical to those in Syria and Lebanon. Virulence frequencies in the yellow rust population on the differential genotypes tested in the trap nurseries were above 70% for some resistance genes. Yellow rust populations in Syria and Lebanon have diverse virulence phenotypes. P. striiformis populations appear to be changing over, and this would be an important consideration for wheat breeding programs in the region.


2013 ◽  
Vol 53 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Safar Ali Safavi ◽  
Assadollah Babai Ahari ◽  
Farzad Afshari ◽  
Mahdi Arzanlou

Abstract Race-specific resistance of barley (Hordeum vulgare L.) to the yellow rust caused by Puccinia striiformis f. sp. hordei, has been reported to be short-lived. Slow rusting resistance has been reported to last for a long time. Twenty Iranian barley cultivars along with resistant and susceptible controls were tested during the 2009-2010 and the 2010-2011 cropping seasons, in field plots at the Ardabil Agricultural Research Station (Iran). The cultivars were tested to identify slow rusting genotypes through epidemiological variables which included: final rust severity (FRS), apparent infection rate (r), relative area under the disease progress curve (rAUDPC), and coefficient of infection (CI). Moreover, differential sets were evaluated in order to determine effective and ineffective resistance genes to barley yellow rust. Results of the mean comparison of resistance parameters showed that cultivars Makouee, Dasht, Fasih, and Arass had low values of FRS, CI, r and rAUDPC compared with susceptible cultivars. The cultivars Walfajre, Abidar and Sahand which had moderate values of the different parameters, were marked as possessing a moderate level of slow rusting. The rest of the cultivars which had high values of different quantitative parameters, were grouped as having a low level of slow rusting or as susceptible. The correlation coefficient between different parameters of slow rusting was significantly high (r = 0.83-0.98). The virulence profile of the prevalent races revealed that rpsEm1, rpsEm2, rpsHF, Rps4, rpsVa1, rpsVa2, rpsAst were effective, and rps2, Rps1.b were ineffective resistance genes during the two year testing period.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1534-1542 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen

Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust) of wheat and is highly variable in virulence toward wheat with race-specific resistance. During 2010, wheat stripe rust was the most widespread in the recorded history of the United States, resulting in large-scale application of fungicides and substantial yield loss. A new differential set with 18 yellow rust (Yr) single-gene lines was established and used to differentiate races of P. striiformis f. sp. tritici, which were named as race PSTv in distinction from the PST races identified in the past. An octal system was used to describe the virulence and avirulence patterns of the PSTv races. From 348 viable P. striiformis f. sp. tritici isolates recovered from a total of 381 wheat and grass stripe rust samples collected in 24 states, 41 races, named PSTv-1 to PSTv-41, were identified using the new set of 18 Yr single-gene differentials, and their equivalent PST race names were determined on the previous set of 20 wheat cultivar differentials. The frequencies and distributions of the races and their virulences were determined. The five most predominant races were PSTv-37 (34.5%), PSTv-11 (17.5%), PSTv-14 (7.2%), PSTv-36 (5.2%), and PSTv-34 (4.9%). PSTv-37 was distributed throughout the country while PSTv-11 and PSTv-14 were almost restricted to states west of the Rocky Mountains. The races had virulence to 0 to 13 of the 18 Yr genes. Frequencies of virulences toward resistance genes Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, YrTr1, and YrExp2 were high (67.0 to 93.7%); those to Yr1 (32.8%) and YrTye (31.3%) were moderate; and those to Yr10, Yr24, Yr32, and YrSP were low (3.4 to 5.7%). All of the isolates were avirulent to Yr5 and Yr15.


2017 ◽  
Vol 53 (No. 1) ◽  
pp. 23-29 ◽  
Author(s):  
N. Zhang ◽  
B.-H. Xu ◽  
Y.-F. Bi ◽  
Q.-F. Lou ◽  
J.-F. Chen ◽  
...  

Gummy stem blight (GSB), caused by Didymella bryoniae (Auersw.) Rehm., is a severe disease affecting Cucurbitaceae crops including melons. The resistance of current melon varieties that carry a single Gsb resistance gene is insufficient to protect against the abundant variation of the D. bryoniae isolates. Pyramiding multiple Gsb resistance genes into melon cultivars is an effective way to develop a broad resistance spectrum and to increase the duration of GSB resistance. In this study, two resistance genes (Gsb-4 and Gsb-6) from two resistant accessions, PI482398 and PI420145, were pyramided into one variety using marker-assisted selection (MAS). The donor parent 4598 that contained Gsb-4 and Gsb-6 was hybridized with muskmelon Baipicui to produce BC<sub>1</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>1</sub>. Phenotyping and MAS enabled identification and pyramiding of two Gsb genes in individuals of F<sub>1,</sub> BC<sub>1</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>1</sub>. Field cultivation showed that individuals carrying both Gsb-4 and Gsb-6 had improved resistance to GSB and improved fruit quality. The results indicated that MAS-based pyramiding is an effective strategy for breeding melon cultivars with increased resistance to GSB.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Prashant Vikram ◽  
Cynthia Ortiz ◽  
S. Singh ◽  
Sukhwinder Singh

Yellow rust, caused by Puccinia striiformis, is one of the most devastating diseases in wheat. A synthetic by elite recombinant inbred line (RIL) population derived from a cross, Botnol/Aegilops squarrosa (666)//Kachu was evaluated for yellow rust resistance in two different environments in Mexico. The population was subjected to DArT-seq analysis for an in-depth genetic characterization. A major effect rust resistance QTL (QTL2A.K) explaining up to 45% phenotypic variance was found to be contributed by Kachee, an elite line of International Maize and Wheat Improvement Center (CIMMYT) Mexico. The QTL2A.K was found to be contributed by a segment of 2NS Chromosome of Triticum ventricosum translocated into the short arm of bread wheat chromosome 2A (QTL2A.K). The position of QTL2A.K was confirmed using T. ventricosum specific primer VENTRIUP-LN2. Identified genomic regions are being introgressed in to the popular but susceptible wheat varieties through marker-assisted breeding for enhancing yellow rust resistance.


2020 ◽  
Author(s):  
Rong Liu ◽  
Jing Lu ◽  
Mei Du ◽  
Min Zhou ◽  
Mingxiu Wang ◽  
...  

Abstract Background: Stripe rust or yellow rust (Yr), caused by Puccinia striiformis f. sp. Tritici (Pst), is one of the most globally devastating fungal disease that significantly reduces yield and quality in wheat (Triticum aestivum). Although some Yr genes have been successfully used in wheat breeding and a little number of them have been cloned, large of the regulating networks and the molecular mechanisms of Pst resistance remains unknown. In this study, a pair of Yr-gene pyramiding line L58 and its background parent cv. Chuanyu12 (CY12) were used to study the transcriptome profiles after inoculated with Pst physiological race CYR34. Results: The results revealed that the different expression genes (DEGs) were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, plant-pathogen interaction and MAPK signaling pathways after Pst-CYR34 inoculation. Compared with CY12, L58 showed greater up-regulated DEGs in those pathways by Pst infection at 24hpi. However, these DEGs became lower expression in L58 and opposite expression in CY12 at 7dpi. Besides, the activities of enzymes (PAL, POD) and products of phenylpropanoid pathway (lignin content) were significantly increased in both CY12 and L58, and the increase was greater and faster in the resistant line L58. Some candidate genes and transcription factors (TFs) associated with Pst resistance were identified, including LRR receptor-like serine/threonine protein kinase, disease resistance protein, MYB, NAC and WRKY transcription factors involved in the fine-tuning of Pst infection responses. Conclusions: Our results give insights into the regulating networks of Pst resistance and pave the way for durable resistant breeding in bread wheat.


Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 966-975 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen ◽  
Jonathan Yuen

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases on wheat in the United States. In 2011, severe wheat stripe rust caused extensive application of fungicides in the western United States, and the disease was more widespread and caused more yield loss in the eastern United States in 2012. In this study, we characterized virulences and identified races of P. striiformis f. sp. tritici by testing the stripe rust samples collected throughout the United States in 2011 and 2012 on a set of 18 Yr single-gene differentials. In 2011, 35 races were identified from 349 viable samples collected from 19 states of the United States and Ontario province of Canada, with PSTv-11 (35.5%), PSTv-37 (12.6%), PSTv-14 (11.8%), PSTv-4 (5.4%), and PSTv-34 (3.4%) as the top five predominant races. In 2012, 23 races were identified from 341 viable samples collected from 24 states of the United States and Ontario of Canada, with PSTv-37 (47.5%), PSTv-11 (11.7%), PSTv-14 (10.0%), PSTv-52 (9.4%), and PSTv-48 (4.4%) as the top five predominant races. Nationally, PSTv-37, PSTv-52, and PSTv-34 were most widely distributed, while PSTv-11, PSTv-14, PSTv-4, and PSTv-48 were mostly detected in the western United States. High frequencies (>80%) were detected for virulences to Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr44, and YrExp2; moderate frequencies (20 to 80%) for virulences to Yr1, Yr43, YrTr1, and YrTye; low frequencies (<10%) for virulences to Yr10, Yr24, Yr32, and YrSP; and virulences to Yr5 and Yr15 were not detected, indicating that these two genes are still effective against the P. striiformis f. sp. tritici population in the United States. Both positive and negative associations were identified between some of the virulences. In total, 55 races identified from 2010 to 2012 in the United States were clustered into two major virulence groups, and dynamics of predominant races and virulence frequencies for the 3 years were presented and discussed. This information is useful for making decisions when screening wheat germplasm for developing stripe-rust-resistant wheat cultivars and managing the disease by growing cultivars with adequate and durable resistance. The severe epidemics and the occurrence of the large number of races in the 3 years indicate that efforts should be made to use diverse resistance genes, especially to combine effective all-stage resistance genes with genes for high-temperature adult-plant resistance.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 379-386 ◽  
Author(s):  
D. Sharma-Poudyal ◽  
X. M. Chen ◽  
A. M. Wan ◽  
G. M. Zhan ◽  
Z. S. Kang ◽  
...  

Wheat stripe rust (yellow rust [Yr]), caused by Puccinia striiformis f. sp. tritici, is an economically important disease of wheat worldwide. Virulence information on P. striiformis f. sp. tritici populations is important to implement effective disease control with resistant cultivars. In total, 235 P. striiformis f. sp. tritici isolates from Algeria, Australia, Canada, Chile, China, Hungary, Kenya, Nepal, Pakistan, Russia, Spain, Turkey, and Uzbekistan were tested on 20 single Yr-gene lines and the 20 wheat genotypes that are used to differentiate P. striiformis f. sp. tritici races in the United States. The 235 isolates were identified as 129 virulence patterns on the single-gene lines and 169 virulence patterns on the U.S. differentials. Virulences to YrA, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, YrUkn, Yr28, Yr31, YrExp2, Lemhi (Yr21), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), Fielder (Yr6, Yr20), Tyee (YrTye), Tres (YrTr1, YrTr2), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were detected in all countries. At least 80% of the isolates were virulent on YrA, Yr2, Yr6, Yr7, Yr8, Yr17, YrUkn, Yr31, YrExp2, Yr21, Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), and Fielder (Yr6, Yr20). Virulences to Yr1, Yr9, Yr25, Yr27, Yr28, Heines VII (Yr2, YrHVII), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Yamhill (Yr2, Yr4a, YrYam), Tyee (YrTye), Tres (YrTr1, YrTr2), Hyak (Yr17, YrTye), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were moderately frequent (>20 to <80%). Virulence to Yr10, Yr24, Yr32, YrSP, and Moro (Yr10, YrMor) was low (≤20%). Virulence to Moro was absent in Algeria, Australia, Canada, Kenya, Russia, Spain, Turkey, and China, but 5% of the Chinese isolates were virulent to Yr10. None of the isolates from Algeria, Canada, China, Kenya, Russia, and Spain was virulent to Yr24; none of the isolates from Algeria, Australia, Canada, Nepal, Russia, and Spain was virulent to Yr32; none of the isolates from Australia, Canada, Chile, Hungary, Kenya, Kenya, Nepal, Pakistan, Russia, and Spain was virulent to YrSP; and none of the isolates from any country was virulent to Yr5 and Yr15. Although the frequencies of virulence factors were different, most of the P. striiformis f. sp. tritici isolates from these countries shared common virulence factors. The virulences and their frequencies and distributions should be useful in breeding stripe-rust-resistant wheat cultivars and understanding the pathogen migration and evolution.


Sign in / Sign up

Export Citation Format

Share Document