scholarly journals Review: Microwave-Promoted Organic Synthesis

2009 ◽  
Vol 8 (2 and 3) ◽  
Author(s):  
Andrew Loftin ◽  
Douglas Armstrong

As of the last twenty years a new wave in organic chemistry has started to change the way people think about putting energy into a reaction mixture. Microwave-promoted organic synthesis is a fast, efficient method of heating a system in order to achieve the completion of a desired reaction. There are many different types of reactions that have been attempted using this method, and still many more to be tested. Microwave-promoted organic synthesis can help to produce high yields of products in a short time, while reducing side reactions and making workups easier. This paper discusses the many benefits of microwave-promoted organic synthesis and gives various examples.

Synthesis ◽  
2022 ◽  
Author(s):  
Dishu Zeng ◽  
Tianbao Yang ◽  
Niu Tang ◽  
Wei Deng ◽  
Jiannan Xiang ◽  
...  

A simple, mild, green and efficient method for the synthesis of 2-aminobenzamides was highly desired in organic synthesis. Herein, we developed an efficient, one-pot strategy for the synthesis of 2-aminobenzamides with high yields irradiated by UV light. 32 examples proceeded successfully by this photo-induced protocol. The yield reached up to 92%. The gram scale was also achieved easily. This building block could be applied in the preparation of quinazolinones derivatives. Amino acid derivatives could be employed smoothly at room temperature. Finally, a plausible mechanism was proposed.


2019 ◽  
Vol 6 (1) ◽  
pp. 54-60 ◽  
Author(s):  
David Esteban Quintero Jimenez ◽  
Lucas Lima Zanin ◽  
Luan Farinelli Diniz ◽  
Javier Ellena ◽  
André Luiz Meleiro Porto

Background: The Knoevenagel condensation is an important reaction in organic chemistry because of its capacity to form new C-C bonds and its products are mainly used in organic synthesis as intermediates, due to the large number of reactions they can undergo. Based on the importance of the Knoevenagel adducts, a sustainable synthetic methodology was developed employing microwave irradiation. Objective: Develop a synthetic methodology employing microwave irradiation and green solvents to obtain Knoevenagel adducts with high yields. Methods: Knoevenagel condensation reactions were evaluated with different basic catalysts, as well as in the presence or absence of microwave irradiation. The scope of the reaction was expanded using different aldehydes, cyanoacetamide or methyl cyanoacetate. The geometry of the formed products was also evaluated. Results: After the optimization process, the reactions between aldehydes and cyanoacetamide were performed with triethylamine as catalyst, in the presence of microwave irradiation, in 35 minutes, using NaCl solution as solvent and resulted in high yields 90-99%. The reactions performed between aldehydes and methyl cyanoacetate were also performed under these conditions, but showed better yields with EtOH as solvent 70-90%. Finally, from X-ray analysis, the (E)-geometry of these compounds was confirmed. Conclusion: In this study we developed synthetic methodology of Knoevenagel condensation using triethylamine, green solvents and microwave irradiation. In 35 minutes, products with high yields (70- 99%) were obtained and the (E)-geometry of the adducts was confirmed.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3678
Author(s):  
Chunling Yuan ◽  
Li Zheng ◽  
Yingdai Zhao

This is the first report of a natural ligand improving the copper-catalyzed homocouplings of (hetero)arylboronic acids. Various important synthetic biaryl intermediates in organic synthesis could be assembled via this method. To gain insight into this reaction, in situ React IR technology was used to confirm the effectivity of this catalyst system. This protocol could provide important biaryl compounds in high yields within a short time.


2002 ◽  
Vol 4 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Ian Patterson

This article addresses the increasingly popular approach to Freud and his work which sees him primarily as a literary writer rather than a psychologist, and takes this as the context for an examination of Joyce Crick's recent translation of The Interpretation of Dreams. It claims that translation lies at the heart of psychoanalysis, and that the many interlocking and overlapping implications of the word need to be granted a greater degree of complexity. Those who argue that Freud is really a creative writer are themselves doing a work of translation, and one which fails to pay sufficiently careful attention to the role of translation in writing itself (including the notion of repression itself as a failure to translate). Lesley Chamberlain's The Secret Artist: A Close Reading of Sigmund Freud is taken as an example of the way Freud gets translated into a novelist or an artist, and her claims for his ‘bizarre poems' are criticized. The rest of the article looks closely at Crick's new translation and its claim to be restoring Freud the stylist, an ordinary language Freud, to the English reader. The experience of reading Crick's translation is compared with that of reading Strachey's, rather to the latter's advantage.


2020 ◽  
Vol 43 (2) ◽  
pp. 45-56
Author(s):  
Abigail Nieves Delgado

The current overproduction of images of faces in digital photographs and videos, and the widespread use of facial recognition technologies have important effects on the way we understand ourselves and others. This is because facial recognition technologies create new circulation pathways of images that transform portraits and photographs into material for potential personal identification. In other words, different types of images of faces become available to the scrutiny of facial recognition technologies. In these new circulation pathways, images are continually shared between many different actors who use (or abuse) them for different purposes. Besides this distribution of images, the categorization practices involved in the development and use of facial recognition systems reinvigorate physiognomic assumptions and judgments (e.g., about beauty, race, dangerousness). They constitute the framework through which faces are interpreted. This paper shows that, because of this procedure, facial recognition technologies introduce new and far-reaching »facialization« processes, which reiterate old discriminatory practices.


2018 ◽  
Author(s):  
Shivika Narang ◽  
Praphul Chandra ◽  
Shweta Jain ◽  
Narahari Y

The blockchain concept forms the backbone of a new wave technology that promises to be deployed extensively in a wide variety of industrial and societal applications. In this article, we present the scientific foundations and technical strengths of this technology. Our emphasis is on blockchains that go beyond the original application to digital currencies such as bitcoin. We focus on the blockchain data structure and its characteristics; distributed consensus and mining; and different types of blockchain architectures. We conclude with a section on applications in industrial and societal settings, elaborating upon a few applications such as land registry ledger, tamper-proof academic transcripts, crowdfunding, and a supply chain B2B platform. We discuss what we believe are the important challenges in deploying the blockchain technology successfully in real-world settings.


2020 ◽  
Vol 27 (3) ◽  
pp. 450-476 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background: The sterile alpha motif (Sam) domain is a small helical protein module, able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming different types of protein architectures. A few Sam domains are involved in pathological processes and consequently, they represent valuable targets for the development of new potential therapeutic routes. This study intends to collect state-of-the-art knowledge on the different modes by which Sam domains can favor disease onset and progression. Methods: This review was build up by searching throughout the literature, for: a) the structural properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a Sam domain in proteins relevant for a specific disease. Results: Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts. Often pathologies are linked to mutations directly positioned in the Sam domains that alter their stability and/or affect interactions that are crucial for proper protein functions. In only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological event by enhancing the action of a different protein domain. Conclusion: Considering the many roles of the Sam domain into a significant variety of diseases, more efforts and novel drug discovery campaigns need to be engaged to find out small molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars on which to build novel therapeutic strategies to cure different pathologies.


Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Suraj N. Mali

: 1,8-diaminonaphthalene (1,8-DAN) with special organic structure was applied in organic synthesis to provide efficient complex scaffolds, through the two or four-component fashion. This review highlights its recent application in organic reactions under different conditions and heterogynous catalysts to produce various molecules, which were used as medicines, sensors, and dyes.


2020 ◽  
Vol 17 ◽  
Author(s):  
Visarapu Malathi ◽  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja

Abstract:: An efficient method has been developed for the synthesis of new pyrano[3,2-c] and pyrano[3,2-a]carbazole de-rivatives via a three component reaction of 4-hydroxycarbazole or 2-hydroxycarbazole, isocyanides, and dialkylacetylenedi-carboxylates. Noteworthy features of this protocol include mild reaction conditions, catalyst-free, high atom-economy and high yields.


2020 ◽  
Vol 17 (7) ◽  
pp. 540-547
Author(s):  
Chun-Hui Yang ◽  
Cheng Wu ◽  
Jun-Ming Zhang ◽  
Xiang-Zhang Tao ◽  
Jun Xu ◽  
...  

Background: The sulfinic esters are important and useful building blocks in organic synthesis. Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters. Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters. Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.


Sign in / Sign up

Export Citation Format

Share Document