scholarly journals LONGITUDINAL FRACTURE INFLUENCE ON THE UNFOCUSED LATERAL LOGGING SOUNDING RESPONSES IN HIGH-RESISTIVITY DEPOSITS

2021 ◽  
Vol 2 (2) ◽  
pp. 109-116
Author(s):  
Anita A. Lapkovskaya ◽  
Karina V. Sukhorukova ◽  
Aleksei M. Petrov ◽  
Irina V. Surodina

The article considers the analysis of unfocused lateral logs (BKZ) simulated in three-dimensional media models with a vertical fracture. It was found that for the Tomsk region Upper Paleozoic deposits conditions the influence of a single thin fracture passing through the well axis on the signals is equivalent to the influence of the invaded low resistivity zone. On the practical data measured in the well of Archinskoe oil-gas-condensate field (Tomsk region) we discuss the possibilities of numerical data inversion for identifying oil-productive intervals.

Author(s):  
R.R. Haliulin ◽  
◽  
S.N. Zakirov ◽  
A.H. Kha ◽  
N.E. Vedernikov ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 122
Author(s):  
Irina Medved ◽  
Elena Bataleva ◽  
Michael Buslov

This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Matthew J. Comeau ◽  
Michael Becken ◽  
Alexey V. Kuvshinov ◽  
Sodnomsambuu Demberel

AbstractCrustal architecture strongly influences the development and emplacement of mineral zones. In this study, we image the crustal structure beneath a metallogenic belt and its surroundings in the Bayankhongor area of central Mongolia. In this region, an ophiolite belt marks the location of an ancient suture zone, which is presently associated with a reactivated fault system. Nearby, metamorphic and volcanic belts host important mineralization zones and constitute a significant metallogenic belt that includes sources of copper and gold. However, the crustal structure of these features, and their relationships, are poorly studied. We analyze magnetotelluric data acquired across this region and generate three-dimensional electrical resistivity models of the crustal structure, which is found to be locally highly heterogeneous. Because the upper crust (< 25 km) is found to be generally highly resistive (> 1000 Ωm), low-resistivity (< 50 Ωm) features are conspicuous. Anomalous low-resistivity zones are congruent with the suture zone, and ophiolite belt, which is revealed to be a major crustal-scale feature. Furthermore, broadening low-resistivity zones located down-dip from the suture zone suggest that the narrow deformation zone observed at the surface transforms to a wide area in the deeper crust. Other low-resistivity anomalies are spatially associated with the surface expressions of known mineralization zones; thus, their links to deeper crustal structures are imaged. Considering the available evidence, we determine that, in both cases, the low resistivity can be explained by hydrothermal alteration along fossil fluid pathways. This illustrates the pivotal role that crustal fluids play in diverse geological processes, and highlights their inherent link in a unified system, which has implications for models of mineral genesis and emplacement. The results demonstrate that the crustal architecture—including the major crustal boundary—acts as a first‐order control on the location of the metallogenic belt.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hassam Nasarullah Chaudhry ◽  
John Kaiser Calautit ◽  
Ben Richard Hughes

The effect of wind distribution on the architectural domain of the Bahrain Trade Centre was numerically analysed using computational fluid dynamics (CFD). Using the numerical data, the power generation potential of the building-integrated wind turbines was determined in response to the prevailing wind direction. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9% for the benchmark model. At the windward side of the building, it was observed that the layers of turbulence intensified in inverse proportion to the height of the building with an average value of 0.45 J/kg. The air velocity was found to gradually increase in direct proportion to the elevation with the turbine located at higher altitude receiving maximum exposure to incoming wind. This work highlighted the potential of using advanced computational fluid dynamics in order to factor wind into the design of any architectural environment.


1980 ◽  
Vol 7 (1) ◽  
pp. 93-104 ◽  
Author(s):  
A.W. Peterson ◽  
T. Blench

This paper, for river engineers and their environmental counterparts, presents and explains the origin and potential of four-dimensional charts that smooth most of the world's numerical data obtained from the equilibrium dimensions of sand rivers, gravel rivers, and laboratory flumes. These charts aim to provide a practical service comparable with that provided by factual plots on the comprehensive classic three-dimensional Stanton friction-factor diagram for circular pipes and clean Newtonian fluid. In the river problems, especially, the existence of different phases (whose transitions are not susceptible to formulation), the inadequacies of textbook theories even for simple phases, and the unavoidable imperfections of both field and laboratory measurements combine to prevent responsible design. The remedy is a graphing of total information backed by references from which its reliability and practicability can be assessed.The references have been chosen to contain principal information in the forms of: (i) usable photos, graphs, and tables; (ii) explanations free from specialized mathematics and speculative arguments; and (iii) papers with discussions, authors' replies, and further useful references (since a major reference list would be too long for this paper). Because condensation has had to be extreme the authors will be glad to attempt answers to discussions and questions on the subject matter, its practical applications, and its implications in teaching and research.


2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


2020 ◽  
Vol 244 ◽  
pp. 439-447
Author(s):  
Aleksandr Ponomarev ◽  
Aleksandr Yusupov

The object of the study is a section of the gas and gas condensate collection system, consisting of an angle throttle installed on a xmas tree and a well piping located after the angle throttle. The aim of the study is to assess the impact of the flow velocity and wall shear stress (WSS) on the carbon dioxide corrosion rate in the area of interest and to come up with substantiated recommendations for the rational operation of the angle throttle in order to reduce the corrosion intensity. In the course of solving this problem, a technique was developed and subsequently applied to assess the influence of various factors on the rate of carbon dioxide corrosion. The technique is based on a sequence of different modeling methods: modeling the phase states of the extracted product, three-dimensional (solid) modeling of the investigated section, hydrodynamic flow modeling of the extracted product using the finite volume method, etc. The developed technique has broad possibilities for visualization of the obtained results, which allow identifying the sections most susceptible to the effects of carbon dioxide corrosion. The article shows that the average flow velocity and its local values are not the factors by which it is possible to predict the occurrence of carbon dioxide corrosion in the pipeline section after the angle throttle. The paper proves that WSS has prevailing effect on the corrosion intensity in the section after the angle choke. The zones of corrosion localization predicted according to the technique are compared with the real picture of corrosion propagation on the inner surface of the pipe, as a result of which recommendations for the rational operation of the angle throttle are formed.


Sign in / Sign up

Export Citation Format

Share Document